Modulhandbuch
für den Bachelorstudiengang
Wirtschaftsinformatik
des Fachbereichs Wirtschafts- und
Sozialwissenschaften der
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Prüfungsordnungsversion: 20202
(Studienbeginn 2020/21, 2021/22 und
2022/23)
Alle Angaben sind ohne Gewähr.

Im Zweifelsfall gilt die Bachelor-Prüfungsordnung.

Wenden Sie sich bei Fragen zu Modulen bitte direkt an die/den zuständige/n Modulverantwortliche/n.

Wenden Sie sich bei sonstigen Fragen zum Studium bitte an die Studiengangskoordination.

Gültig ab: 01.10.2023
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA-Arbeit</td>
<td>Bachelorarbeit</td>
</tr>
<tr>
<td>ECTS</td>
<td>European Credit Transfer System</td>
</tr>
<tr>
<td>EK</td>
<td>Einführungskurs</td>
</tr>
<tr>
<td>GOP</td>
<td>Grundlagen- und Orientierungsprüfung</td>
</tr>
<tr>
<td>h</td>
<td>Stunden</td>
</tr>
<tr>
<td>HS</td>
<td>Hauptseminar</td>
</tr>
<tr>
<td>IBS</td>
<td>International Business Studies</td>
</tr>
<tr>
<td>K</td>
<td>Kolloquium</td>
</tr>
<tr>
<td>KK</td>
<td>Klausurenkurs</td>
</tr>
<tr>
<td>MC-Test</td>
<td>Multiple-Choice-Test</td>
</tr>
<tr>
<td>P</td>
<td>Praktikum</td>
</tr>
<tr>
<td>ProS</td>
<td>Proseminar</td>
</tr>
<tr>
<td>SL</td>
<td>Studienleistungen</td>
</tr>
<tr>
<td>S</td>
<td>Seminar</td>
</tr>
<tr>
<td>Sozök</td>
<td>Sozialökonomik</td>
</tr>
<tr>
<td>SoSe</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>SWS</td>
<td>Semesterwochenstunden</td>
</tr>
<tr>
<td>T</td>
<td>Tutorium</td>
</tr>
<tr>
<td>Ü</td>
<td>Übung</td>
</tr>
<tr>
<td>V</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>WiWi</td>
<td>Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>WiSe</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>
Allgemeine Hinweise

- Bei Fragen wenden Sie sich bitte an die Studienberatung Ihres Studiengangs oder an die jeweiligen Modulverantwortlichen.
- Jedes Modul darf nur einmal belegt werden!
- Alle Angaben im Bachelormodulhandbuch sind ohne Gewähr. Im Zweifelsfall gilt die Bachelor-Prüfungsordnung.
- Modulbeschreibungen sind immer nur in ihrer aktuellen Fassung gültig.

Wichtige Eckpfeiler im Studium

1. Studienplan

2. Grundlagen- und Orientierungsprüfung

3. Pflichtbereiche

Alle Module, die Teil eines Pflichtbereichs sind, müssen im Laufe des Studiums belegt werden. Wenn ein Pflichtmodul, nach drei Versuchen, endgültig nicht bestanden wurde, führt dies zur Exmatrikulation. Hierunter fallen auch die Module der GOP, für die allerdings nur zwei Prüfungsversuche möglich sind.

4. Wahlpflichtbereiche

In den Wahlpflichtbereichen muss die erforderliche Anzahl an ECTS durch dort wählbare Module erbracht werden. Das Modulhandbuch bietet eine Übersicht der verschiedenen Wahlpflichtbereiche und jeweiligen Module. Wenn ein Wahlpflichtbereich endgültig nicht mehr bestanden werden kann, da zu viele seiner Module endgültig nicht bestanden wurden, führt dies zur Exmatrikulation. Studierende können zusätzliche Wahlpflichtmodule belegen, die im Zeugnis als Zusatzleistungen verbucht werden und den Notendurchschnitt nicht beeinflussen.
Studien- und Prüfungsverwaltung im campo-Portal

Anleitungen und Videos zum neuen Portal campo z. B. zur Suche von Modulbeschreibungen oder zur Prüfungsan- und abmeldung etc. finden Sie unter: https://www.intern.fau.de/lehre-und-studium/campusmanagement-an-der-fau-das-neue-campo-portal/informationsmaterial-zu-hisinone-exa

Lehrveranstaltungsevaluation

Hinweise zu Art und Umfang von Prüfungsleistungen

Die Art der am Fachbereich Wirtschafts- und Sozialwissenschaften gültigen Prüfungsleistungen ist definiert in §17 Prüfungsarten der Bachelor-Rahmenprüfungsordnung (BPO). Darüber hinaus sind Prüfungsumfänge in den §§18 bis 20a BPO geregelt. Die Prüfungsordnungen sind unter folgendem Link einzusehen:
http://www.zuv.fau.de/universitaet/organisation/recht/studiensatzungen/rw.shtml#Wirtschaft

Soweit die einzelnen Modulbeschreibungen nichts Genaueres definieren, sind für die Bachelorstudiengänge am Fachbereich folgende Prüfungsformen mit den entsprechenden Prüfungsumfängen gültig:

<table>
<thead>
<tr>
<th>Prüfungsart (Englische Übersetzung)</th>
<th>Umfang Bachelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. schriftliche Prüfung:</td>
<td></td>
</tr>
<tr>
<td>a. Klausur (Written examination)</td>
<td>60/90/120 Minuten</td>
</tr>
<tr>
<td>b. Hausarbeit (Written assignment)</td>
<td>ca. 15 Seiten</td>
</tr>
<tr>
<td>c. Seminararbeit (Seminar paper)</td>
<td>ca. 15 Seiten</td>
</tr>
<tr>
<td>2. mündliche Prüfung (Oral examination)</td>
<td>ca. 20 Minuten</td>
</tr>
<tr>
<td>3. Sonderformen, insbesondere:</td>
<td></td>
</tr>
<tr>
<td>a. Projektarbeit /-bericht (Research project/Project report)</td>
<td>ca. 20 Seiten</td>
</tr>
<tr>
<td>b. Praktikumsbericht (Placement report)</td>
<td>ca. 15 Seiten</td>
</tr>
<tr>
<td>c. Thesenpapier (Handout)</td>
<td>ca. 2 Seiten</td>
</tr>
<tr>
<td>d. Protokoll (Report)</td>
<td>ca. 10 Seiten</td>
</tr>
<tr>
<td>e. Kurztest (Short test)</td>
<td>ca. 15 Minuten</td>
</tr>
<tr>
<td>f. Referat (Presentation)</td>
<td>ca. 25 Minuten</td>
</tr>
<tr>
<td>g. Präsentation/Präsentationspapier (Presentation/Presentation paper)</td>
<td>ca. 20 Minuten/ca. 20 Seiten</td>
</tr>
<tr>
<td>h. Diskussionspapier (Discussion paper)</td>
<td>ca. 10 Seiten</td>
</tr>
<tr>
<td>i. Moderation (Moderation)</td>
<td>ca. 20 Minuten</td>
</tr>
<tr>
<td>j. Lehrprobe (Demonstration lesson)</td>
<td>ca. 45 Minuten</td>
</tr>
<tr>
<td>k. Fallstudie (Case study)</td>
<td>ca. 25 Minuten und/oder 10 Seiten</td>
</tr>
<tr>
<td>l. Diskussionsbeitrag, ehemals: Diskussionsbeteiligung/Mitarbeit (Class participation)</td>
<td>ca. 10 Minuten</td>
</tr>
<tr>
<td>m. Portfolioprüfung (Portfolio)</td>
<td>k.A.</td>
</tr>
<tr>
<td>n. Elektronische Prüfung (Electronic examination)</td>
<td>ca. 90 Minuten</td>
</tr>
<tr>
<td>o. Antwort-Wahl-Verfahren (Multiple-choice test)</td>
<td>ca. 40 Minuten</td>
</tr>
<tr>
<td>p. Versuchspersonenstunde (Research participation)</td>
<td>ca. 60 Minuten</td>
</tr>
<tr>
<td>q. Reflexion (Reflection paper)</td>
<td>ca. 10 Minuten oder 10 Seiten</td>
</tr>
<tr>
<td>r. Strategiekonzept (Strategic concept)</td>
<td>ca. 6 Seiten</td>
</tr>
</tbody>
</table>
Studienplan (Studienbeginn 2020/21, 2021/22 und 2022/23)

<table>
<thead>
<tr>
<th>Bachelor in Wirtschaftsinformatik</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECTS</td>
</tr>
<tr>
<td>Wirtschaftswissenschaften</td>
<td>20</td>
</tr>
<tr>
<td>Pflichtbereich Wirtschaftswissenschaften</td>
<td>15</td>
</tr>
<tr>
<td>Unternehmen und Unternehmen (GOP)</td>
<td>5</td>
</tr>
<tr>
<td>Marketing*</td>
<td>5</td>
</tr>
<tr>
<td>Produktion, Logistik, Beschaffung</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtbereich Wirtschaftswissenschaften</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtbereich Wirtschaftswissenschaften</td>
<td>5</td>
</tr>
<tr>
<td>Informatik</td>
<td>50</td>
</tr>
<tr>
<td>Pflichtbereich Informatik</td>
<td></td>
</tr>
<tr>
<td>Algorithmen & Datenstrukturen (für Medizintechnik) (GOP)</td>
<td>30</td>
</tr>
<tr>
<td>Einführung in Datenbanken für Wirtschaftsinformatik*</td>
<td>10</td>
</tr>
<tr>
<td>Grundlagen der Logik in der Informatik</td>
<td>5</td>
</tr>
<tr>
<td>Einführung in die Software Engineering*</td>
<td>5</td>
</tr>
<tr>
<td>Theoretische Informatik für Wirtschaftsinformatik</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtbereich Informatik</td>
<td>20</td>
</tr>
<tr>
<td>Wahlpflichtbereich Informatik</td>
<td>5</td>
</tr>
<tr>
<td>Wirtschaftsinformatik</td>
<td>65</td>
</tr>
<tr>
<td>Pflichtbereich Wirtschaftsinformatik</td>
<td>30</td>
</tr>
<tr>
<td>WIN Projektwoche</td>
<td>5</td>
</tr>
<tr>
<td>Business and Information System Engineering (GOP)</td>
<td>5</td>
</tr>
<tr>
<td>Data Science: Machine Learning und Data Driven Business</td>
<td>5</td>
</tr>
<tr>
<td>Data Science: Datenmanagement und -analyse für Wirtschaftsinformatik (GOP)</td>
<td>5</td>
</tr>
<tr>
<td>Business Process Management (GOP)</td>
<td>5</td>
</tr>
<tr>
<td>Managing Projects Successfully</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtbereich Wirtschaftsinformatik</td>
<td>35</td>
</tr>
<tr>
<td>Data and Knowledge</td>
<td>10</td>
</tr>
<tr>
<td>Digital Business and Processes</td>
<td>15</td>
</tr>
<tr>
<td>Architectures and Development</td>
<td>10</td>
</tr>
<tr>
<td>Methodische Grundlagen</td>
<td>15</td>
</tr>
<tr>
<td>Pflichtbereich Methodische Grundlagen</td>
<td>10</td>
</tr>
<tr>
<td>Data Science: Datenauswertung</td>
<td>5</td>
</tr>
<tr>
<td>Data Science: Statistik</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtbereich Methodische Grundlagen</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtbereich Methodische Grundlagen</td>
<td>5</td>
</tr>
<tr>
<td>Seminar und Reflexion</td>
<td>15</td>
</tr>
<tr>
<td>Projektseminar Wirtschaftsinformatik</td>
<td>10</td>
</tr>
<tr>
<td>Forschungsmethodisches Seminar</td>
<td>5</td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>15</td>
</tr>
<tr>
<td>Bachelorarbeit (inkl. Seminar)</td>
<td>15</td>
</tr>
<tr>
<td>ECTS</td>
<td>180</td>
</tr>
</tbody>
</table>

* Gilt für alle Studierenden, die sich bezogen auf die bisherigen Module „Absatz“, „Konzeptionelle Modellierung“ und „Softwareentwicklung in Großprojekten“ nicht in einem laufenden Prüfungsverfahren befinden.

Wahlpflichtbereiche (Studienbeginn 2020/21, 2021/22 und 2022/23)

Wirtschaftsinformatik B.Sc.

Wahlpflichtbereiche des Studienganges
(nur gültig für Studierende der B.Sc. Wirtschaftsinformatik mit Studienbeginn ab WiSe 2020/21)

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Wahlpflichtbereich Wirtschaftswissenschaften (5 ECTS)</th>
<th>Wahlpflichtbereich Informatik (20 ECTS)</th>
<th>Wahlpflichtbereich Wirtschaftsinformatik (35 ECTS)</th>
<th>Wahlpflichtbereich Methodische Grundlagen (5 ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data and Knowledge (10 ECTS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digital Business and Processes (15 ECTS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Architectures and Development (10 ECTS)</td>
<td></td>
</tr>
</tbody>
</table>

In den Wahlpflichtbereichen des Studienganges Wirtschaftsinformatik B.Sc. im Umfang von insgesamt 70 ECTS-Punkten erwerben die Studierenden umfassende Kenntnisse in den Modulbereichen:

- Wirtschaftswissenschaften
- Informatik
- Wirtschaftsinformatik
- Methodische Grundlagen

Das Qualifikationsziel liegt darin, den Studierenden anwendungsbezogenes Wissen in den einzelnen Modulbereichen zu vermitteln. Je nach Wahlpflichtbereich belegen die Studierenden zwischen 5 und 35 ECTS.

Wahlpflichtbereich Wirtschaftswissenschaften (5 ECTS) (1 aus 6)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>ECTS</th>
<th>WiSe/SoSe</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>82140</td>
<td>Buchführung</td>
<td>5 ECTS</td>
<td>WiSe</td>
<td>Prof. Dr. Hechtner</td>
</tr>
<tr>
<td>84100</td>
<td>Integriertes Management</td>
<td>5 ECTS</td>
<td>Jedes</td>
<td>Professorinnen bzw. Professoren des Instituts für Management</td>
</tr>
<tr>
<td>85766</td>
<td>Strategie, Organisation und Führung</td>
<td>5 ECTS</td>
<td>Jedes</td>
<td>Prof. Dr. Holtbrügge</td>
</tr>
<tr>
<td>82051</td>
<td>Jahresabschluss</td>
<td>5 ECTS</td>
<td>SoSe</td>
<td>Prof. Dr. Henselmann</td>
</tr>
<tr>
<td>82350</td>
<td>Kostenrechnung und Controlling</td>
<td>5 ECTS</td>
<td>WiSe</td>
<td>Prof. Dr. Fischer</td>
</tr>
<tr>
<td>82021</td>
<td>Unternehmen, Märkte, Volkswirtschaften</td>
<td>5 ECTS</td>
<td>WiSe</td>
<td>Prof. Dr. Merkl, Prof. Dr. Rincke, Prof. Riphahn, Ph.D.</td>
</tr>
</tbody>
</table>
Wahlpflichtbereich Informatik (20 ECTS)

Alle Module aus den folgenden 8 Vertiefungsrichtungen der Informatik sowie die darunter aufgeführten einzelnen Module

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>ECTS</th>
<th>WiSe/SoSe</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertiefungsrichtung: Datenbanksysteme</td>
<td></td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik</td>
</tr>
<tr>
<td></td>
<td>Vertiefungsrichtung: IT-Sicherheit</td>
<td></td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik</td>
</tr>
<tr>
<td></td>
<td>Vertiefungsrichtung: Künstliche Intelligenz</td>
<td></td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik</td>
</tr>
<tr>
<td></td>
<td>Vertiefungsrichtung: Software Engineering</td>
<td></td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik</td>
</tr>
<tr>
<td></td>
<td>Vertiefungsrichtung: Informatik in der Bildung</td>
<td></td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik</td>
</tr>
<tr>
<td></td>
<td>Vertiefungsrichtung: Theoretische Informatik</td>
<td></td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik</td>
</tr>
<tr>
<td></td>
<td>Vertiefungsrichtung: Programmiersysteme</td>
<td></td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik</td>
</tr>
<tr>
<td></td>
<td>Vertiefungsrichtung: Mustererkennung</td>
<td></td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik</td>
</tr>
<tr>
<td>44585</td>
<td>Middleware - Cloud Computing</td>
<td>5 ECTS</td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik (Informatik 4)</td>
</tr>
<tr>
<td>95280</td>
<td>Verteilte Systeme - V+Ü</td>
<td>5 ECTS</td>
<td></td>
<td>Professorinnen bzw. Professoren des Departments Informatik (Informatik 4)</td>
</tr>
</tbody>
</table>

Hinweis: Informationen zu den Vertiefungsrichtungen und den Modulen sind im campo zu finden.
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>ECTS</th>
<th>WiSe/SoSe</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>85765</td>
<td>Big Data: Technologien, Methoden und Konzepte</td>
<td>5 ECTS</td>
<td>WiSe</td>
<td>Prof. Dr. Harth</td>
</tr>
<tr>
<td>83458</td>
<td>Business Analytics: Technologien, Methoden und Konzepte</td>
<td>5 ECTS</td>
<td>SoSe</td>
<td>Prof. Dr. Kraus</td>
</tr>
<tr>
<td>86960</td>
<td>Enterprise Content and Collaboration Management</td>
<td>5 ECTS</td>
<td>WiSe</td>
<td>Prof. Dr. Laumer</td>
</tr>
<tr>
<td>83459</td>
<td>Experimentelle Verhaltensforschung in Data Science</td>
<td>5 ECTS</td>
<td>SoSe</td>
<td>Prof. Dr. Tiefenbeck</td>
</tr>
<tr>
<td>83468</td>
<td>Machine Learning for Business: Advanced Concepts</td>
<td>5 ECTS</td>
<td>SoSe</td>
<td>Prof. Dr. Amberg</td>
</tr>
</tbody>
</table>

Digital Business and Processes (15 ECTS) (3 aus 4)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>ECTS</th>
<th>WiSe/SoSe</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>82397</td>
<td>E-Business and E-Commerce</td>
<td>5 ECTS</td>
<td>SoSe</td>
<td>Prof. Dr. Tiefenbeck</td>
</tr>
<tr>
<td>85764</td>
<td>Digital Transformation in the Energy and Mobility Sector (DITEM)</td>
<td>5 ECTS</td>
<td>WiSe</td>
<td>Prof. Dr. Tiefenbeck</td>
</tr>
<tr>
<td>83455</td>
<td>Implementing innovation</td>
<td>5 ECTS</td>
<td>- SoSe</td>
<td>Prof. Dr. Möslein</td>
</tr>
<tr>
<td></td>
<td>Innovation strategy III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Innovation design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83456</td>
<td>Innovation Strategy</td>
<td>5 ECTS</td>
<td>WiSe</td>
<td>Prof. Dr. Möslein und Prof. Dr. Roth</td>
</tr>
<tr>
<td>82455</td>
<td>Service Management and Service Engineering</td>
<td>5 ECTS</td>
<td>SoSe</td>
<td>Prof. Dr. Matzner</td>
</tr>
</tbody>
</table>

Architectures and Development (10 ECTS) (2 aus 4)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>ECTS</th>
<th>WiSe/SoSe</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>83452 bzw. 87657</td>
<td>Innovation technology</td>
<td>5 ECTS</td>
<td>- WiSe</td>
<td>Prof. Dr. Möslein</td>
</tr>
<tr>
<td></td>
<td>Innovation technology I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Innovation technology II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87660</td>
<td>IT-gestützte Prozessautomatisierung</td>
<td>5 ECTS</td>
<td>SoSe</td>
<td>Prof. Dr. Matzner</td>
</tr>
<tr>
<td>82451</td>
<td>IT-Management</td>
<td>5 ECTS</td>
<td>Jedes</td>
<td>Prof. Dr. Amberg</td>
</tr>
<tr>
<td></td>
<td>IT-Management I</td>
<td></td>
<td>Jedes</td>
<td>Prof. Dr. Amberg</td>
</tr>
<tr>
<td></td>
<td>IT-Management II</td>
<td></td>
<td>Jedes</td>
<td>Prof. Dr. Amberg</td>
</tr>
<tr>
<td>83463</td>
<td>Web-Programming</td>
<td>5 ECTS</td>
<td>Jedes</td>
<td>Prof. Dr. Laumer</td>
</tr>
</tbody>
</table>
Wahlpflichtbereich Methodische Grundlagen (5 ECTS) (1 aus 5)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>ECTS</th>
<th>WiSe/SoSe</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>86840</td>
<td>Business English for Information Systems</td>
<td>5 ECTS</td>
<td>WiSe/SoSe</td>
<td>Dr. Oesterreicher</td>
</tr>
<tr>
<td>86850</td>
<td>Business English Advanced for Information Systems</td>
<td>5 ECTS</td>
<td>WiSe/SoSe</td>
<td>Dr. Oesterreicher</td>
</tr>
<tr>
<td>82178</td>
<td>Data Science: Ökonometrie</td>
<td>5 ECTS</td>
<td>SoSe</td>
<td>Prof. Riphahn, Ph.D.</td>
</tr>
<tr>
<td>82162</td>
<td>Mathematik</td>
<td>5 ECTS</td>
<td>jedes</td>
<td>Prof. Dr. Fickel</td>
</tr>
<tr>
<td>64585</td>
<td>Mathematik C1 für Wirtschaftsinformatik</td>
<td>5 ECTS</td>
<td>WiSe</td>
<td>Prof. Dr. Gugat</td>
</tr>
</tbody>
</table>

Fremdsprachen in Wirtschaftsinformatik (Studienbeginn 2020/21, 2021/22 und 2022/23)

WICHTIGER HINWEIS:
Jedes Modul darf nur einmal belegt werden!
Übersicht über Modulbeschreibungen (Studienbeginn 2020/21, 2021/22 und 2022/23)

Bachelorarbeit (B.Sc. Wirtschaftsinformatik 2020) (1999) .. 5

Grundlagen- und Orientierungsprüfung (GOP)
- Algorithmen und Datenstrukturen für MT - Übung (93054) ... 7
- Algorithmen und Datenstrukturen für MT - Vorlesung (93055) .. 9
- Business and Information Systems Engineering (82154) ... 11
- Business Process Management (83467) .. 13
- Data Science: Datenmanagement und -analyse für Wirtschaftsinformatik (82191) 15
- Unternehmer und Unternehmen (82011) ... 17

Pflichtbereich
- Data Science: Datenauswertung (82179) .. 20
- Data Science: Machine Learning and Data Driven Business (82173) 22
- Data Science: Statistik (82176) .. 24
- Einführung in das Software Engineering (93097) .. 26
- Einführung in Datenbanken für Wirtschaftsinformatik (93078) 28
- Forschungsmethodisches Seminar (82310) .. 30
- Grundlagen der Logik in der Informatik (93072) .. 32
- Managing projects successfully (83443) .. 35
- Marketing (82025) .. 37
- Produktion, Logistik, Beschaffung (82060) ... 39
- Projektseminar Wirtschaftsinformatik (82386) .. 42
- Theoretische Informatik für Wirtschaftsinformatik (93450) ... 43
- WIN-Projektwoche (83465) ... 45

Wahlpflichtbereich Wirtschaftswissenschaften
- Buchführung (82141) ... 48
- Jahresabschluss (82051) ... 50
- Kostenrechnung und Controlling (82350) ... 52
- Strategie, Organisation und Führung (85766) .. 54
- Unternehmen, Märkte, Volkswirtschaften (82021) ... 56

Data and knowledge
- Big Data: Technologien, Methoden und Konzepte (85765) ... 59
- Business Analytics: Technologien, Methoden und Konzepte (83458) 61
- Enterprise Content and Collaboration Management (86960) 63
- Experimentelle Verhaltensforschung in Data Science (83459) 65
- Machine Learning for Business: Advanced Concepts (83468) 67

Digital business and processes
- Digital Transformation in the Energy and Mobility Sector (DITEM) (85764) 70
- E-Business und E-Commerce (82397) ... 73
- Implementing innovation (83455) .. 75
- Innovation strategy (83464) ... 76
- Service Management und Service Engineering (82455) ... 78

Architectures and development
- Innovation technology (87657) ... 81
- IT-gestützte Prozessautomatisierung (87660) ... 83
- IT-Management (82451) ... 84
- Prozess- und Informationsmanagement (83461) ... 86
- Web-Programming (83463) ... 87

Wahlpflichtbereich Informatik
- Advanced Design and Programming (5-ECTS) (97008) .. 91
- Analyse und Design objektorientierter Softwaresysteme mit der Unified Modeling Language (UML) (510375) ... 93
<table>
<thead>
<tr>
<th>Kurs</th>
<th>Vorlesungsnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte IT-Sicherheit</td>
<td>326311</td>
</tr>
<tr>
<td>Approximationsalgorithmen</td>
<td>247639</td>
</tr>
<tr>
<td>Beschreibungslogik und formale Ontologien</td>
<td>806144</td>
</tr>
<tr>
<td>Biomedizinische Signalanalyse</td>
<td>23070</td>
</tr>
<tr>
<td>Datenbank Praxis</td>
<td>93002</td>
</tr>
<tr>
<td>Diagnostic Medical Image Processing</td>
<td>44150</td>
</tr>
<tr>
<td>eBusiness Technologies und Evolutionäre Informationssysteme</td>
<td>710850</td>
</tr>
<tr>
<td>Effiziente kombinatorische Algorithmen</td>
<td>843472</td>
</tr>
<tr>
<td>Einführung in die IT-Sicherheit</td>
<td>44631</td>
</tr>
<tr>
<td>Fehlertolerierende Softwarearchitekturen (Vorlesung mit Übung)</td>
<td>869140</td>
</tr>
<tr>
<td>Forensische Informatik</td>
<td>792501</td>
</tr>
<tr>
<td>Formale Methoden der Softwareentwicklung</td>
<td>151316</td>
</tr>
<tr>
<td>Grundlagen des Übersetzerbaus</td>
<td>44240</td>
</tr>
<tr>
<td>Human Computer Interaction</td>
<td>645618</td>
</tr>
<tr>
<td>Human Factors in Security and Privacy</td>
<td>658644</td>
</tr>
<tr>
<td>Interventional Medical Image Processing</td>
<td>44140</td>
</tr>
<tr>
<td>Introduction to Machine Learning</td>
<td>65718</td>
</tr>
<tr>
<td>Kommunikation und Parallele Prozesse</td>
<td>173107</td>
</tr>
<tr>
<td>Künstliche Intelligenz I</td>
<td>894856</td>
</tr>
<tr>
<td>Künstliche Intelligenz II</td>
<td>532733</td>
</tr>
<tr>
<td>Logik-Basierte Sprachverarbeitung</td>
<td>675137</td>
</tr>
<tr>
<td>Mainframe@Home</td>
<td>93183</td>
</tr>
<tr>
<td>Mainframe Programmierung</td>
<td>505241</td>
</tr>
<tr>
<td>Mainframe Programmierung II</td>
<td>93182</td>
</tr>
<tr>
<td>Maschinelles Lernen für Zeitreihen</td>
<td>428256</td>
</tr>
<tr>
<td>Middleware-Cloud Computing</td>
<td>44585</td>
</tr>
<tr>
<td>Monad-Based Programming</td>
<td>845618</td>
</tr>
<tr>
<td>Music Processing Analysis - Lecture and Exercise</td>
<td>639119</td>
</tr>
<tr>
<td>Nailing your Thesis (PROJ 5-ECTS)</td>
<td>580491</td>
</tr>
<tr>
<td>Nailing your Thesis (VUE 5-ECTS)</td>
<td>480491</td>
</tr>
<tr>
<td>The AMOS Project (PO Role, VUE 5 ECTS)</td>
<td>93145</td>
</tr>
<tr>
<td>The AMOS Project (SD Role, VUE 10 ECTS)</td>
<td>93143</td>
</tr>
<tr>
<td>Pattern Recognition</td>
<td>44130</td>
</tr>
<tr>
<td>Praktikum Informatik in der Bildung (PIB)</td>
<td>93149</td>
</tr>
<tr>
<td>Praktische Semantik von Programmiersprachen</td>
<td>599478</td>
</tr>
<tr>
<td>Praktische Softwaretechnik</td>
<td>57025</td>
</tr>
<tr>
<td>Randomisierte Algorithmen</td>
<td>164985</td>
</tr>
<tr>
<td>Security and Privacy in Pervasive Computing</td>
<td>327615</td>
</tr>
<tr>
<td>Security in Embedded Hardware</td>
<td>172338</td>
</tr>
<tr>
<td>Sichere Systeme</td>
<td>93105</td>
</tr>
<tr>
<td>Software-Anwendungen mit KI (VUE 5-ECTS)</td>
<td>93146</td>
</tr>
<tr>
<td>Software Exploitation</td>
<td>93098</td>
</tr>
<tr>
<td>Software Projektmanagement</td>
<td>312443</td>
</tr>
<tr>
<td>Softwarezuverlässigkeit</td>
<td>357823</td>
</tr>
<tr>
<td>Speech and Language Processing</td>
<td>44455</td>
</tr>
<tr>
<td>Swarm Intelligence</td>
<td>44500</td>
</tr>
<tr>
<td>SWAT-Intensivübung</td>
<td>669768</td>
</tr>
<tr>
<td>Testen von Softwaresystemen</td>
<td>189989</td>
</tr>
<tr>
<td>Test- und Analyseverfahren zur Software-Verifikation und Validierung</td>
<td>43200</td>
</tr>
<tr>
<td>Verteilte Systeme</td>
<td>95280</td>
</tr>
<tr>
<td>Wissensrepräsentation und -verarbeitung</td>
<td>93134</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich Methodische Grundlagen

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Vorlesungsnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business English Advanced for Information Systems</td>
<td>86850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Vorlesungsnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nailing your Thesis (VUE 5-ECTS) (93183)</td>
<td>580491</td>
</tr>
<tr>
<td>Nailing your Thesis (VUE 5-ECTS) (480491)</td>
<td>170</td>
</tr>
<tr>
<td>The AMOS Project (PO Role, VUE 5 ECTS) (93145)</td>
<td>172</td>
</tr>
<tr>
<td>The AMOS Project (SD Role, VUE 10 ECTS) (93143)</td>
<td>174</td>
</tr>
<tr>
<td>Pattern Recognition (44130)</td>
<td>176</td>
</tr>
<tr>
<td>Praktikum Informatik in der Bildung (PIB) (93149)</td>
<td>179</td>
</tr>
<tr>
<td>Praktische Semantik von Programmiersprachen (599478)</td>
<td>180</td>
</tr>
<tr>
<td>Praktische Softwaretechnik (57025)</td>
<td>182</td>
</tr>
<tr>
<td>Randomisierte Algorithmen (164985)</td>
<td>184</td>
</tr>
<tr>
<td>Security and Privacy in Pervasive Computing (327615)</td>
<td>186</td>
</tr>
<tr>
<td>Security in Embedded Hardware (172338)</td>
<td>188</td>
</tr>
<tr>
<td>Sichere Systeme (93105)</td>
<td>191</td>
</tr>
<tr>
<td>Software-Anwendungen mit KI (VUE 5-ECTS) (93146)</td>
<td>193</td>
</tr>
<tr>
<td>Software Exploitation (93098)</td>
<td>194</td>
</tr>
<tr>
<td>Software Projektmanagement (312443)</td>
<td>195</td>
</tr>
<tr>
<td>Softwarezuverlässigkeit (357823)</td>
<td>197</td>
</tr>
<tr>
<td>Speech and Language Processing (44455)</td>
<td>198</td>
</tr>
<tr>
<td>Swarm Intelligence (44500)</td>
<td>200</td>
</tr>
<tr>
<td>SWAT-Intensivübung (669768)</td>
<td>202</td>
</tr>
<tr>
<td>Testen von Softwaresystemen (189989)</td>
<td>204</td>
</tr>
<tr>
<td>Test- und Analyseverfahren zur Software-Verifikation und Validierung</td>
<td>43200</td>
</tr>
<tr>
<td>Verteilte Systeme (95280)</td>
<td>208</td>
</tr>
<tr>
<td>Wissensrepräsentation und -verarbeitung (93134)</td>
<td>211</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich Methodische Grundlagen

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Vorlesungsnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business English Advanced for Information Systems (86850)</td>
<td>214</td>
</tr>
</tbody>
</table>
Integriertes Management

Business English for information systems (86840).. 216
Data Science: Ökonometrie (82178).. 218
Mathematik (82162)... 220
Mathematik C 1 für Wirtschaftsinformatik (64585)... 221

Unternehmenssimulation zur wert- und risikoorientierten Steuerung in Versicherungen

DATEV-Führerschein (82393).. 224
Business Plan Seminar (82387).. 226
Case Study Training im strategischen Management (84205).. 228
Einführung in das Nachhaltigkeitsmanagement (86920)... 229
Fallstudienseminar Supply Chain Strategie (84220).. 231
Introduction to Sustainability Management (87002).. 232
Unternehmenssimulation zur wert- und risikoorientierten Steuerung in Versicherungen (85614)... 234
Modulbezeichnung

1999

Bachelorarbeit (B.Sc. Wirtschaftsinformatik 20202)

Bachelor's thesis

15 ECTS

Lehrveranstaltungen

Seminar

Seminar zur Bachelorarbeit (2 SWS)

3 ECTS

Lehrende

Prof. Dr. Sven Laumer

Inhalt

Die Bachelorarbeit beinhaltet das Verfassen einer Arbeit, die thematischen Bezug zum gewählten Schwerpunkt haben soll.

Lernziele und Kompetenzen

In der Bachelorarbeit zeigen die Studierenden, dass sie in der Lage sind, innerhalb einer vorgegebenen Frist ein Thema bzw. eine Problemstellung selbstständig mithilfe wissenschaftlicher Methoden zu bearbeiten und die Ergebnisse sachgerecht darzustellen. Das Seminar zur Bachelorarbeit soll die Studierenden bei der Anfertigung der Bachelorarbeit unterstützen und ihnen wichtige Hilfen zur selbständigen Lösung und Darstellung von Problemen bieten. Darüber hinaus sollen die Studierenden komplexe fachbezogene Probleme und Lösungen gegenüber einem akademischem Publikum oder Fachleuten argumentativ vertreten.

Voraussetzungen für die Teilnahme

Siehe Hinweise der einzelnen Lehrstühle.

Einpassung in Studienverlaufsplan

Semester: 6

Verwendbarkeit des Moduls

Pflichtmodul Bachelor of Science Wirtschaftsinformatik 20202

Studien- und Prüfungsleistungen

schriftlich (9 Wochen)

Berechnung der Modulnote

schriftlich (100%)
- Bachelorarbeit (100 %)
- Seminar zur Bachelorarbeit: Studienleistung bestanden

Turnus des Angebots

in jedem Semester

Wiederholung der Prüfungen

Die Prüfungen dieses Moduls können nur einmal wiederholt werden.

Arbeitsaufwand in Zeitstunden

Präsenzzeit: 30 h

Eigenstudium: 420 h

Dauer des Moduls

1 Semester

Unterrichts- und Prüfungssprache

Deutsch

Literaturhinweise

Wird lehrstuhlspezifisch bekannt gegeben.
Grundlagen- und Orientierungsprüfung (GOP)
Inhalt

Lernziele und Kompetenzen

Die Studierenden
- lösen objektorientierte Programmieraufgaben in der Programmiersprache Java
- veranschaulichen Programmstrukturen mit Hilfe einer Untermenge der Unified Modelling Language
- vergleichen die Aufwände verschiedener Algorithmen hinsichtlich der Laufzeit und des Speicherbedarfs
- implementieren grundlegende kombinatorische Algorithmen, insbesondere Such- und Sortierverfahren, binäre Bäume und grundlegende Graphalgorithmen
- verstehen und benutzen Rekursion als Bindeglied zwischen mathematischen Problembeschreibungen und programmiertechnischer Umsetzung
- übersetzen rekursive Problembeschreibungen in iterative
- planen und bearbeiten Programmieraufgaben so, dass sie zeitgerecht fertig gestellt werden
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
 Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | In der Vorlesung und den Übungen werden zu den einzelnen Kapiteln passende Lehrbücher vorgeschlagen. |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Algorithmen und Datenstrukturen für MT - Vorlesung</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Algorithmen und Datenstrukturen (für Medizintechnik) (GOP) (4 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Tobias Reichenbach, Alina Schüller, Jonas Auernheimer</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Tobias Reichenbach</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden • lösen objektorientierte Programmieraufgaben in der Programmiersprache Java • veranschaulichen Programmstrukturen mit Hilfe einer Untermenge der Unified Modelling Language • vergleichen die Aufwände verschiedener Algorithmen hinsichtlich der Laufzeit und des Speicherbedarfs • implementieren grundlegende kombinatorische Algorithmen, insbesondere Such- und Sortierverfahren, binäre Bäume und grundlegende Graphalgorithmen • verstehen und benutzen Rekursion als Bindeglied zwischen mathematischen Problembeschreibungen und programmiererischer Umsetzung • übersetzen rekursive Problembeschreibungen in iterative • planen und bearbeiten Programmieraufgaben so, dass sie zeitgerecht fertig gestellt werden</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Grundlagen- und Orientierungsprüfung (GOP) Bachelor of Science Wirtschaftsinformatik 20232</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten) Digitale Fernprüfung, 60 min.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
| | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
 | | Eigenstudium: 90 h | |
|---|---|---|
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | In der Vorlesung werden zu den einzelnen Kapiteln passende Lehrbücher vorgeschlagen. |
Modulbezeichnung

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Business and Information Systems Engineering</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>82154</td>
<td>Business and information systems engineering</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Tutorium: Business Information Systems Engineering (2 SWS)</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung: V: Business and Information Systems Engineering (2 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td></td>
<td>Übung: Ü: Business and Information Systems Engineering (2 SWS)</td>
<td>-</td>
</tr>
</tbody>
</table>

Lehrende

<table>
<thead>
<tr>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Sven Laumer</td>
</tr>
<tr>
<td>Prof. Dr. Kathrin Möslein</td>
</tr>
<tr>
<td>Prof. Dr. Martin Matzner</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Sven Laumer</td>
</tr>
<tr>
<td>Prof. Dr. Martin Matzner</td>
</tr>
<tr>
<td>Prof. Dr. Kathrin Möslein</td>
</tr>
</tbody>
</table>

Inhalt

Die Veranstaltung vermittelt die Grundlagen der Wirtschaftsinformatik. Im Mittelpunkt stehen Informationssysteme (bzw. soziotechnische Systeme), welche aus den drei Perspektiven "Mensch", "Aufgabe" und "Technik" beleuchtet werden. Behandelt werden folgende Themenblöcke:
- Vernetzte Unternehmenswelt,
- Inner- und überbetriebliche Informationsverarbeitung,
- Gestaltung und das Management von Informationssystemen und
- Innovationsmanagement.

Lernziele und Kompetenzen

Die Studierenden...
- erhalten einen Überblick über die Rolle von Informationstechnologien und Informationssystemen in Unternehmen,
- lernen die Grundlagen der Disziplin "Wirtschaftsinformatik" kennen,
- wissen, wie sich Informationssysteme auf die Unternehmensorganisation und -strategie auswirken,
- erhalten ein Grundverständnis über ethische, soziale und politische Fragen zum Einsatz von Informationssystemen,
- lernen, wie die integrierte Informationsverarbeitung Unternehmen hilft, Funktions-, Prozess- und Abteilungsgrenzen zu überwinden,
- erhalten einen Überblick über verschiedene Arten von Anwendungssystemen in Unternehmen,
- kennen verschiedene Modellierungsansätze zur Unterstützung der Systementwicklung,
- erhalten einen Überblick über die Rolle des Informationsmanagement in Unternehmen,
- lernen die Grundlagen der IT-Sicherheit kennen und
- lernen die Grundlagen des Innovations- und Wertschöpfungsmanagement kennen.

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td>13</td>
<td>Wiederholung der Prüfungen</td>
</tr>
<tr>
<td>14</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td>15</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>16</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td>17</td>
<td>Literaturhinweise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Grundlagen- und Orientierungsprüfung (GOP) Bachelor of Science Wirtschaftsinformatik 20202</td>
</tr>
<tr>
<td>10</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Die Prüfungen dieses Moduls können nur einmal wiederholt werden.</td>
</tr>
<tr>
<td>14</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>15</td>
<td>1 Semester</td>
</tr>
<tr>
<td>16</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen auf https://www.win.rw.fau.de/bachelor/waehrend-des-studiums/bise/</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Martin Matzner</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Einführung in Business Process Management</td>
</tr>
<tr>
<td></td>
<td>• Der BPM-Lebenszyklus</td>
</tr>
<tr>
<td></td>
<td>• Prozessidentifikation: Kontext, Prozessarchitekturen, Auswahl / Priorisierung von Prozessen zur Optimierung</td>
</tr>
<tr>
<td></td>
<td>• Einführung in Prozessmodellierung mit BPMN</td>
</tr>
<tr>
<td></td>
<td>• Fortgeschrittene Prozessmodellierung: Wiederholungen, Nachbesserungen, Ereignisse, Ausnahmen, Regeln, Best Practices</td>
</tr>
<tr>
<td></td>
<td>• Prozessentdeckung: Methoden, Modellierung, Qualitätskontrolle</td>
</tr>
<tr>
<td></td>
<td>• Qualitative Prozessanalyse</td>
</tr>
<tr>
<td></td>
<td>• Quantitative Prozessanalyse</td>
</tr>
<tr>
<td></td>
<td>• Prozess-Redesign: Hintergründe, Transaktionale Methoden, Transformative Methoden</td>
</tr>
<tr>
<td></td>
<td>• Prozessgewährte Informationssysteme: Arten, Vorteile, Herausforderungen</td>
</tr>
<tr>
<td></td>
<td>• Prozessimplementierung mit ausführbaren Modellen</td>
</tr>
<tr>
<td></td>
<td>• Prozessüberwachung: Kontext und Ansätze, Techniken aus dem Process Mining, Performancemessung,</td>
</tr>
<tr>
<td></td>
<td>• Techniken für Geschäftsprozessmanagement in wissensintensiven Prozessen</td>
</tr>
<tr>
<td></td>
<td>• Business Process Management als Unternehmensfähigkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• erwerben fundierte Kenntnisse über Grundfragen, Begrifflichkeit und praktische Relevanz des Geschäftsprozessmanagements,</td>
</tr>
<tr>
<td></td>
<td>• können zentrale Konzepte in der Prozessmodellierung und -automatisierung verstehen und erklären,</td>
</tr>
<tr>
<td></td>
<td>• können verschiedene Arten von Modellierungsnotationen (imperativ, deklarativ) unterscheiden und erklären,</td>
</tr>
<tr>
<td></td>
<td>• können verschiedene Stufen im BPM-Lebenszyklus und deren Anforderungen an Stakeholder verstehen und erklären,</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, Geschäftsprozesse in BPMN zu verstehen und zu modellieren,</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, Geschäftsprozesse zu analysieren und optimieren,</td>
</tr>
<tr>
<td></td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
</tbody>
</table>
| 9 | Verwendbarkeit des Moduls | Architectures and development Bachelor of Science
Wirtschaftsinformatik 20182
Grundlagen- und Orientierungsprüfung (GOP) Bachelor of Science
Wirtschaftsinformatik 20232 |
| 10 | Studien- und Prüfungsleistungen | Klausur (60 Minuten) |
| 11 | Berechnung der Modulnote | Klausur (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch
Englisch |
| 16 | Literaturhinweise | Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A.
Thomas Grisold, Steven Groß, Jan Mendling, Bastian Wurm.* Springer
Berlin Heidelberg. |
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Data Science: Datenmanagement und -analyse für Wirtschaftsinformatik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>82191</td>
<td>Data Science: Data management and analytics for information systems</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Sven Laumer</th>
</tr>
</thead>
</table>

| 6 | Lernziele und Kompetenzen | Die Studierenden • erkennen die strategische Relevanz einer strukturierten Datenverwaltung und -analyse für Unternehmen. • sind in der Lage, einen auf strategische Unternehmensziele ausgerichteten Datenmanagement- und -analyseprozess zu konzipieren und mithilfe geeigneter Technologien zu implementieren. • verfügen über ein vertieftes technisches Verständnis in den Bereichen Datenmanagement und Datenanalyse durch praxisorientierte Projektarbeit mit SQL, Webtechnologien, R und Tableau. |

<p>| 7 | Voraussetzungen für die Teilnahme | Erfolgreicher Abschluss der Veranstaltungen Algorithmen und Datenstrukturen (für Medizintechnik) und Data Science: Machine |</p>
<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Verwendbarkeit des Moduls</th>
<th>Studien- und Prüfungsleistungen</th>
<th>Berechnung der Modulnote</th>
<th>Turnus des Angebots</th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Dauer des Moduls</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Semester: 2</td>
<td>Grundlagen- und Orientierungsprüfung (GOP) Bachelor of Science Wirtschaftsinformatik 20232</td>
<td>Klausur (90 Minuten)</td>
<td>Klausur (100%)</td>
<td>nur im Sommersemester</td>
<td>Präsenzzeit: 60 h</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>Köppen, Veit; Saake, Gunter; Sattler, Kai-Uwe (2014): Data Warehouse Technologien. Heidelberg: Verlagsgruppe Hüthig Jehle Rehm.</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung 82011</td>
<td>Unternehmer und Unternehmen Entrepreneurs and businesses</td>
<td>5 ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>--</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Unternehmer und Unternehmen (2 SWS)</td>
<td>3,5 ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Unternehmer und Unternehmen - Übung (2 SWS)</td>
<td>1,5 ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Harald Hungenberg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. Sebastian Junge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | Modulverantwortliche/r | Prof. Dr. Harald Hungenberg | |
| | | Prof. Dr. Sebastian Junge | |

| 7 | Voraussetzungen für die Teilnahme | Keine. Es wird empfohlen, die beiden Lehrveranstaltungen im selben Semester zu belegen. |

| 8 | Einpassung in Studienverlaufsplan | Semester: 1 |

9	Verwendbarkeit des Moduls	Kernbereich (Fachkompetenz) Bachelor of Science Wirtschaftsinformatik 20172
		BWL Bachelor of Science Wirtschaftsinformatik 20182
10	Studien- und Prüfungsleistungen	Klausur mit MultipleChoice (60 Minuten) Präsentation
11	Berechnung der Modulnote	Klausur mit MultipleChoice (70%) Präsentation (30%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Kurspaket mit Lehrmaterialien und Literatur (siehe Veranstaltungsleitfaden)
Pflichtbereich		
1	Modulbezeichnung 82179	**Data Science: Datenauswertung**
Data Science: Data evaluation	**5 ECTS**	
---	---	---
2	Lehrveranstaltungen	Tutorium: Data Science: Datenauswertung R-Tutorium (0 SWS)
Übung: Data Science: Datenauswertung, Übung (1 SWS)		
Vorlesung: Data Science: Datenauswertung (2 SWS)		
Übung: Data Science: Datenauswertung, R-Übung (1 SWS)	0 ECTS	
1,25 ECTS		
2,5 ECTS		
1,25 ECTS		
3	Lehrende	Gohar Grigoryan
Johannes Frank		
Lena Müller		
Prof. Dr. Jonas Dovern		
4	Modulverantwortliche/r	Prof. Dr. Jonas Dovern
5	Inhalt	• Datentypen / Messskalen
• Graphische Darstellung von Datensätzen		
• Häufigkeiten		
• Verteilungsmaßzahlen für Stichproben		
• Korrelationsmaßzahlen für multivariate Datensätze		
• Grundlagen des maschinellen Lernens		
6	Lernziele und Kompetenzen	Die Studierenden
• beherrschen die wichtigsten Methoden der deskriptiven Statistik;		
• sind in der Lage deskriptive Datenauswertungen in Form von Tabellen und Graphiken in wissenschaftlichen Publikationen und anderen Medien richtig zu interpretieren;		
• können Grundbegriffe des maschinellen Lernens nennen und die Grundlagen ausgewählter Verfahren des überwachten und unüberwachten Lernens erklären;		
• können deskriptive statistische Methoden mit dem Softwarepaket R anwenden, um reale Datensätze zu analysieren.		
7	Voraussetzungen für die Teilnahme	Mathematikkenntnisse der gymnasialen Oberstufe.
8	Einpassung in Studienverlaufsplan	Semester: 3
9	Verwendbarkeit des Moduls	Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182		
Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232		
10	Studien- und Prüfungsleistungen	Klausur mit MultipleChoice (60 Minuten)
11	Berechnung der Modulnote	Klausur mit MultipleChoice (100%)
12	Turnus des Angebots	nur im Wintersemester
	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h
<pre><code>| | Eigenstudium: 90 h |
</code></pre>
<p>|---|--------------------------------|-------------------|
| | Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache | Deutsch |
| | James, Gareth, Daniela Witten, Trevor Hastie und Robert Tibsirani (2013), An Introduction to Statistical Learning, Springer, Heidelberg. |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Data Science: Machine Learning and Data Driven Business</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Data Science: Machine Learning & Data Driven Business (4 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Michael Amberg</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Michael Amberg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tuba Karatas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doris Zinkl</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Die Veranstaltung ist unterteilt in eine Vorlesung und eine Übung.

Die Vorlesung
- behandelt Rahmenbedingungen von Data Science und klassifiziert datengetriebene Geschäftsmodelle,
- sensibilisiert für Grundsätze der Verarbeitung von sensiblen und personenbezogenen Daten,
- vermittelt klassische und agile Methoden des Projektmanagements zur Durchführung von datengetriebenen Projekten,
- veranschaulicht die wichtigsten Formen des maschinellen Lernens und zeigt mögliche Einsatzgebiete in Unternehmen.

Die Übung
- behandelt die Visualisierung von Daten mit Tableau,
- zeigt die Generierung von Prognosen mit Rapidminer,
- umfasst das wissenschaftliche Schreiben mit Mendeley.

Lernziele und Kompetenzen

Die Studierenden
- verstehen den Zusammenhang zwischen der Entstehung von Daten, der Verarbeitung von Daten zu Anwendungen und der Entstehung datengetriebener Geschäftsmodelle,
- kennen die Rahmenbedingungen von datengetriebenen Anwendungen und pflegen einen verantwortungsvollen Umgang mit sensiblen und personenbezogenen Daten,
- können Formen des maschinellen Lernens voneinander abgrenzen und mit Bezug zu einem Problem auswählen,
- haben sich mit der computergestützten Analyse von Daten und dem Schreiben von wissenschaftlichen Texten befasst.

Voraussetzungen für die Teilnahme

Keine
<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten) schriftlich</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (50%) schriftlich (50%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Bitte beachten Sie die aktuellen Informationen auf https://www.it-management.rw.fau.de/lehre/bachelor/machine-learning-data-driven-business/</td>
</tr>
</tbody>
</table>
| 1 | Modulbezeichnung 82176 | Data Science: Statistik
Data Science: Statistics | 5 ECTS |
|---|---|---|---|
| 2 | Lehrveranstaltungen | Übung: Data Science: Statistik R-Übung (1 SWS)
Übung: Data Science: Statistik, Übung (1 SWS)
Tutorium: Data Science: Statistik, Tutorium (0 SWS)
Tutorium: Data Science: Statistik R-Tutorium (0 SWS)
Vorlesung: Data Science: Statistik (2 SWS) | 1,25 ECTS
1,25 ECTS
-
0 ECTS
2,5 ECTS |
| 3 | Lehrende | Johannes Frank
Gohar Grigoryan
Lena Müller
Prof. Dr. Jonas Dovern |
| 4 | Modulverantwortliche/r | Prof. Dr. Jonas Dovern |
| 5 | Inhalt | • Grundlagen der Wahrscheinlichkeitsrechnung
• Verteilungsfunktionen von quantitativen Merkmalen und Zufallsvariablen
• Eindimensionale parametrische Verteilungsmodelle
• Stichproben, Stichprobenfunktionen und Grenzwertsätze
• Punktschätzer
• Statistische Hypothesentests |
| 6 | Lernziele und Kompetenzen | Die Studierenden
• beherrschen die wichtigsten Methoden der induktiven Statistik;
• sind in der Lage, induktive Methoden als Grundlage des Arbeitens in empirischen Wissenschaften einzusetzen und die auf diesen Methoden basierenden Ergebnisse kritisch zu überprüfen;
• können statistische Hypothesentests durchführen und Testergebnisse richtig interpretieren;
• können statistische Methoden mit dem Softwarepaket R anwenden, um reale Datensätze zu analysieren. |
| 7 | Voraussetzungen für die Teilnahme | Data Science: Datenauswertung |
| 8 | Einpassung in Studienverlaufsplan | Semester: 3 |
| 9 | Verwendbarkeit des Moduls | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232 |
| 10 | Studien- und Prüfungsleistungen | Klausur mit MultipleChoice (60 Minuten) |
| 11 | Berechnung der Modulnote | Klausur mit MultipleChoice (100%) |
| 12 | Turnus des Angebots | nur im Wintersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>14</th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Einführung in das Software Engineering</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Introduction to Software Engineering (SWS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Introduction to Software Engineering Exercises (SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr.-Ing. Andreas Maier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Andreas Maier</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Einführung in die einzelnen Phasen der Softwareentwicklung: Anforderungsanalyse, Spezifikation, Entwurf, Implementierung, Test, Wartung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beispielhafter Einsatz ausgewählter repräsentativer Verfahren zur Unterstützung dieser Entwicklungsphasen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ergonomische Prinzipien Benutzungsoberfläche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Objektorientierte Analyse und Design mittels UML</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entwurfsmuster als konstruktive, wiederverwendbare Lösungsansätze für ganze Problemklassen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatisch unterstützte Implementierung aus UML-Diagrammen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teststrategien</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refactoring zur Unterstützung der Wartungsphase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>wenden auf Basis der bereits erworbenen Programmierkenntnisse systematische und strukturierte Vorgehensweisen (wie das Wasserfall- und V-Modell) zur Bewältigung der Komplexität im Zusammenhang mit dem Programmieren-im-Großen an;</td>
</tr>
<tr>
<td></td>
<td>benutzen ausgewählte Spezifikationssprachen (wie Endliche Automaten, Petri-Netze und OCL), um komplexe Problemstellungen eindeutig zu formulieren und durch ausgewählte Entwurfsmuster umzusetzen;</td>
</tr>
<tr>
<td></td>
<td>wenden UML-Diagramme (wie Use Case-, Klassen-, Sequenz- und Kommunikationsdiagramme) zum Zweck objektorientierter Analyse- und Design-Aktivitäten an;</td>
</tr>
<tr>
<td></td>
<td>reproduzieren allgemeine Entwurfslösungen wiederkehrender Probleme des Software Engineering durch Verwendung von Entwurfsmustern;</td>
</tr>
<tr>
<td></td>
<td>erfassen funktionale und strukturelle Testansätze;</td>
</tr>
<tr>
<td></td>
<td>setzen Refactoring-Strategien zur gezielten Erhöhung der Software-Änderungsfreundlichkeit um.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Lehrbuch der Softwaretechnik (Band 1), Helmut Balzert, 2000</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung 93078</td>
<td>Einführung in Datenbanken für Wirtschaftsinformatik</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Richard Lenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Ziel des Moduls ist die Vermittlung von Kenntnissen zur systematischen und bedarfsorientierten Erstellung konzeptioneller Datenbankschemata sowie die relationale Datenbanksprache SQL. Darüber hinaus werden Grundkenntnisse zur Funktionsweise und zur Implementierung von Datenbankmanagementsystemen vermittelt, im Einzelnen:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Grundbegriffe von Datenbanken</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Entity-Relationship Modell und erweitertes E/R-Modell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• UML Klassendiagramme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Das Relationale Datenmodell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Systematische Abbildung von ER-Diagrammen auf Relationale Datenbankschemata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Normalisierung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Relationale Algebra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multidimensionale Modellierung und Data Warehousing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Schichtenmodell zur Implementierung von Datenbanksystemen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pufferverwaltung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Indexstrukturen (B-Bäume, B+-Bäume)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anfrageverarbeitung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Transaktionen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Synchronisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recovery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Andere Datenmodelle, No-SQL Systeme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ontologien, Semantic Web, RDF, SPARQL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
<th>Die Studierenden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Können die zentralen Begriffe aus der Datenbankfachliteratur definieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erstellen ER-Diagramme und erweiterte ER Diagramme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Können ER-Diagramme systematisch in geeignete relationale Datenbankschemata überführen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Definieren die Normalformen 1NF, 2NF, 3NF, BCNF und 4NF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Können ein nicht normalisiertes Relationenschema in 3NF überführen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erstellen Anfragen auf der Basis der Relationalen Algebra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erstellen Datenbankschemata mit Hilfe der SQL DDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erstellen Datenbankanfragen mit SQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erstellen multidimensionale ER-Diagramme und bilden diese auf Star- oder Snowflake-Schemata ab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erklären die Funktionsweise von Datenbankpuffern</td>
</tr>
</tbody>
</table>
- Erklären die Funktionsweise von Indexstrukturen
- Erklären die Grundlagen der Anfrageoptimierung
- Erläutern und bewerten die Funktionsweise verschiedener Join-Algorithmen
- Erklären die ACID Eigenschaften von Transaktionen
- Erklären die Funktionsweise des Zwei-Phasen-Freigabe-Protokolls
- Erläutern die Funktionsweise des Zwei-Phasen-Sperr-Protokolls
- Vergleichen die verschiedenen Klassen von Wiederherstellungs-Algorithmen
- Erläutern die grundlegende Funktionsweise der Protokoll-basierten Wiederherstellung
- Beschreiben und vergleichen verschiedene Datenmodelle

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>keine Einpassung in Studienverlaufsplan hinterlegt!</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>keine Angaben zum Turnus des Angebots hinterlegt!</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 90 h
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Forschungsmethodisches Seminar</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>82310</td>
<td>Seminar: Forschungsmethodisches Seminar (WI1) (0 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar: Künstliche Intelligenz im beruflichen Alltag (0 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar: Forschungsmethodisches Seminar (2 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar: Data-driven behavioral interventions for sustainability (DABIS) (2 SWS)</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungen

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
<th>Prof. Dr. Kathrin Möselein</th>
<th>Prof. Dr. Angela Roth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tina Wölfli</td>
<td>Prof. Dr. Sven Laumer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bastian Brechtelsbauer</td>
<td>Charlotte Bahr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Willi Tang</td>
<td>Pepe Bellin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. Verena Tiefenbeck</td>
<td></td>
</tr>
</tbody>
</table>

4 Modulverantwortliche/r

| 5 | Inhalt | Wird lehrstuhlspezifisch bekannt gegeben |

6 Lernziele und Kompetenzen

| 7 | Voraussetzungen für die Teilnahme | Keine |

8 Einpassung in Studienverlaufsplan

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
<th>Vertiefungsbereich und Schlüsselqualifikationen Bachelor of Science Wirtschaftsinformatik 20152</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pflichtbereich und SQ Bachelor of Science Wirtschaftsinformatik 20182</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
</tbody>
</table>

10 Studien- und Prüfungsleistungen

11	Berechnung der Modulnote	schriftlich/mündlich
		Seminararbeit und Präsentation (70% + 30%)
		schriftlich/mündlich (100%)
		Seminararbeit und Präsentation (70% + 30%)

12 Turnus des Angebots

| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h |
| | | Eigenstudium: 120 h |

14 Dauer des Moduls

| 15 | Unterrichts- und Prüfungssprache | Deutsch |

Stand: 29. September 2023
<p>| 16 | Literaturhinweise | Siehe Lehrstuhlwebsites |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Grundlagen der Logik in der Informatik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>93072</td>
<td>Foundations of logic in informatics</td>
<td>5 ECTS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Übung: Intensivübung zu Grundlagen der Logik in der Informatik (2 SWS)</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Übung: Übungen zu Grundlagen der Logik in der Informatik (2 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Grundlagen der Logik in der Informatik (2 SWS)</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
<th>Thorsten Wißmann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. Lutz Schröder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Lutz Schröder</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aussagenlogik:</td>
<td>• Syntax und Semantik</td>
</tr>
<tr>
<td></td>
<td>• Automatisches Schließen: Resolution</td>
</tr>
<tr>
<td></td>
<td>• Formale Deduktion: Korrektheit, Vollständigkeit</td>
</tr>
<tr>
<td>Prädikatenlogik erster Stufe:</td>
<td>• Syntax und Semantik</td>
</tr>
<tr>
<td></td>
<td>• Automatisches Schließen: Unifikation, Resolution</td>
</tr>
<tr>
<td></td>
<td>• Quantorenelimination</td>
</tr>
<tr>
<td></td>
<td>• Anwendung automatischer Beweiser</td>
</tr>
<tr>
<td></td>
<td>• Formale Deduktion: Korrektheit, Vollständigkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Erwerb fundierter Kenntnisse zu den Grundlagen und der praktischen Relevanz der Logik mit besonderer Berücksichtigung der Informatik;</td>
<td></td>
</tr>
<tr>
<td>• Verstehen und Erklären des logischen Schließens;</td>
<td></td>
</tr>
<tr>
<td>• Einübung in das logische und wissenschaftliche Argumentieren, Aufstellen von Behauptungen und Begründungen;</td>
<td></td>
</tr>
<tr>
<td>• Kritische Reflexion von Logikkalkülen, insbesondere hinsichtlich Entscheidbarkeit, Komplexität, Korrektheit und Vollständigkeit;</td>
<td></td>
</tr>
<tr>
<td>• Erstellung und Beurteilung von Problemspezifkationen (Kohärenz, Widerspruchsfreiheit) und ihre Umsetzung in Logikprogramme;</td>
<td></td>
</tr>
<tr>
<td>• Beherrschung der praktischen Aspekte der Logikprogrammierung.</td>
<td></td>
</tr>
</tbody>
</table>

Fachkompetenz
Wissen
Die Studierenden geben Definitionen zur Syntax und Semantik der verwendeten Logiken wieder.
beschreiben grundlegende Deduktionsalgorithmen geben Regeln der verwendeten formalen Deduktionssysteme wieder
Verstehen
Die Studierenden erläutern das Verhältnis zwischen Syntax, Semantik und Beweistheorie der verwendeten Logiken.

Stand: 29. September 2023
erklären die Funktionsprinzipien grundlegender Deduktionsalgorithmen
erläutern die Funktionsweise automatischer Beweiser
erläutern grundlegende Resultate der Metatheorie der verwendeten Logiken und deren Bedeutung
Anwenden
Die Studierenden
wenden Deduktionsalgorithmen auf konkrete Deduktionsprobleme an
formalisieren Anwendungsprobleme in logischer Form und verwenden automatische Beweiser zur Erledigung entstehender Beweisziele
führen einfache formale Beweise manuell
Analysieren
Die Studierenden führen einfache metatheoretische Beweise, insbesondere durch syntaktische Induktion
Lern- bzw. Methodenkompetenz
Die Studierenden beherrschen das grundsätzliche Konzept des Beweises als hauptsächliche Methode des Erkenntnisgewinns in der theoretischen Informatik. Sie überblicken abstrakte Begriffsarchitekturen.
Sozialkompetenz
Die Studierenden lösen abstrakte Probleme in Gruppenarbeit.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtbereich (Methodenkompetenz) Bachelor of Science Wirtschaftsinformatik 20152 Pflichtbereich und SQ Bachelor of Science Wirtschaftsinformatik 20182 Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Managing projects successfully</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Managing Projects Successfully (Vorlesung) (4 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Michael Amberg</td>
<td></td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr. Michael Amberg
Tuba Karatas
Doris Zinkl |

| 5 | Inhalt | Die Bedeutung von Projekten hat in den vergangenen Jahren in nahezu allen Unternehmen und Organisationen erheblich zugenommen. Entsprechend ist auch der Bedarf an professionellen, also gut ausgebildeten und erfahrenen Projektmitarbeiterinnen und Projektmitarbeitern gestiegen. Im Allgemeinen lässt sich das Projektmanagement in zwei große Bereiche unterteilen, das klassische und das agile Projektmanagement. Die Inhalte der Veranstaltung orientieren sich an den Inhalten der folgenden Standardwerke/Zertifizierungen:
• Klassisches Projektmanagement: PMBOK Guide des Project Management Institute (PMI)
• Agiles Projektmanagement: Professional Scrum Master I Certification (scrum.org) |

| 6 | Lernziele und Kompetenzen | Die Studierenden
• kennen und verstehen die grundlegenden Konzepte und Methoden des klassischen sowie des agilen Projektmanagements und können diese anwenden,
• verstehen, in welchen Projekten klassisches oder agiles Projektmanagement,
• erhalten das notwendige Wissen zum erfolgreichen Bestehen des oben aufgeführten Scrum-Zertifikats. |

| 7 | Voraussetzungen für die Teilnahme | Erfolgreicher Abschluss der Assessmentphase |

| 8 | Einpassung in Studienverlaufsplan | Semester: 3 |

| 9 | Verwendbarkeit des Moduls | Spezielle WI 1: Technologie- und Projektmanagement im E-Business Bachelor of Science Wirtschaftsinformatik 20152
Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 |

| 10 | Studien- und Prüfungsleistungen | Klausur (90 Minuten) |

| 11 | Berechnung der Modulnote | Klausur (100%) |

| 12 | Turnus des Angebots | nur im Wintersemester |

| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |

<p>| 14 | Dauer des Moduls | 1 Semester |</p>
<table>
<thead>
<tr>
<th>15</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Marketing Principles of Marketing</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>
| 4 | Modulverantwortliche/r | Prof. Dr. Andreas Fürst
Prof. Dr. Nicole Koschate-Fischer
Prof. Dr. Martina Steul-Fischer | |
| 5 | Inhalt | • Einführung und allgemeine Grundlagen
• Konsumentenverhalten
• Grundlagen des strategischen Marketings
• Digital Marketing
• Marketing-Mix: Produkt-, Preis-, Vertriebs- und Kommunikationspolitik
• Marktforschung | |
| 6 | Lernziele und Kompetenzen | Die Studierenden
• erhalten Kenntnisse der Grundbegriffe und -konzepte des Marketings.
• entwickeln Verständnis der Marketingziele und -probleme.
• lernen Marketingentscheidungen selbständig zu strukturieren und zu lösen. | |
| 7 | Voraussetzungen für die Teilnahme | Keine | |
| 8 | Einpassung in Studienverlaufsplan | Semester: 2;4 | |
| 9 | Verwendbarkeit des Moduls | Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232 | |
| 10 | Studien- und Prüfungsleistungen | Klausur (60 Minuten)
Klausur+MultipleChoice | |
| 11 | Berechnung der Modulnote | Klausur (100%) | |
| 12 | Turnus des Angebots | nur im Sommersemester | |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 50 h
Eigenstudium: 100 h | |
| 14 | Dauer des Moduls | 1 Semester | |
| 15 | Unterrichts- und Prüfungssprache | Deutsch | |
| 16 | Literaturhinweise | Basisliteratur:
Ergänzende Literatur:

<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Produktion, Logistik, Beschaffung Production, logistics, procurement</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Tutorium: TUB PLB (L) (2 SWS) Vorlesung: Produktion/Logistik/Beschaffung - Vorlesung (2 SWS) Übung: Produktion/Logistik/Beschaffung - Übung (2 SWS)</td>
<td>- 5 ECTS -</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Christopher Münch Prof. Dr.-Ing. Eva Maria Hartmann Prof. Dr. Kai-Ingo Voigt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Kai-Ingo Voigt</th>
</tr>
</thead>
</table>

In der Veranstaltung werden elementare Prozesse der industriellen Wertschöpfung abgebildet. Im Mittelpunkt stehen dabei die Wertschöpfungstätigkeiten Beschaffung, Produktion und Logistik. Dieses Modul spiegelt, in Kombination mit dem Modul Absatz, die gesamte Wertschöpfungskette des Unternehmens wider. Wesentliche Inhalte sind:

Bedeutung der Funktionen Beschaffung, Produktion, Logistik
Grundlagen des Beschaffungsmanagements, insbes.:
- Aufgaben und Objekte der Beschaffung, Entwicklungsstufen der Beschaffungskonzeption sowie generelle Bedeutung der betrieblichen Beschaffungsfunktion
- Bestimmungsgrößen des Beschaffungsmanagements (insb. Ziele, interne und externe Rahmenbedingungen der Beschaffung)
Grundlagen der Produktionstheorie, insbes.:
- Grundlegende Ziele und Entscheidungskriterien in der Produktion
- Produktionstheoret. Abbildung von Faktorkombinationsprozessen produzierender Unternehmen
- Kostenverläufe bei kombinierter (kurzfristiger) Anpassung der Produktion an Beschäftigungsschwankungen
Konzepte und Verfahren des Produktionsmanagements, insb.:
- lang-, mittel- & kurzfristige Produktionsprogrammpläne
- Produktionsprogrammpläne bei Ein- und bei mehrproduktunternehmen (ohne Engpass, mit eindeutigem Engpass, bei mehreren Engpässen)
- Prozess- bzw. Durchführungsplanung (insb. Losgrößen- und Ablaufplanung)
Grundlagen der industriellen Logistik, insb.:
- Trends und Entwicklungen in der Logistik
Lernziele und Kompetenzen

Voraussetzungen für die Teilnahme

Erfolgreicher Abschluss der Assessmentphase

Einpassung in den Studienverlaufsplan

Semester: 3
| | Verwendbarkeit des Moduls | Kernbereich (Fachkompetenz) Bachelor of Science Wirtschaftsinformatik 20172
| | | BWL Bachelor of Science Wirtschaftsinformatik 20182
		Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232
9	Studien- und Prüfungsleistungen	Klausur mit MultipleChoice (90 Minuten)
10	Berechnung der Modulnote	Klausur mit MultipleChoice (100%)
11	Turnus des Angebots	nur im Wintersemester
12	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h
		Eigenstudium: 90 h
13	Dauer des Moduls	1 Semester
14	Unterrichts- und Prüfungssprache	Deutsch
15	Literaturhinweise	Vorlesungs- und Übungsskript
		Voigt, K.-I.: Industrielles Management, Industriebetriebslehre aus prozessorientierter Sicht, Berlin 2009
		Adam, D.: Produktionsmanagement, Wiesbaden 1998
		Fandel, G.; Fistek, A.; Stütz, S.: Produktionsmanagement, Berlin 2010
		Christopher, M (2010) Logistics and Supply Chain Management
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Projektseminar Wirtschaftsinformatik</th>
<th>10 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>82386</td>
<td>Seminar in information systems</td>
<td></td>
</tr>
</tbody>
</table>

2	Lehrveranstaltungen	Seminar: Projektseminar Datengetriebene Anwendungsentwicklung (4 SWS)	10 ECTS
		Seminar: Seminar Digitale Dienstleistungssysteme an der WiSo (4 SWS)	
		Seminar: Hot Topics in Web Technologies and the Internet of Things (SWS)	5 ECTS

| 3 | Lehrende | Kian Schmalenbach
| | | Prof. Dr. Sven Laumer |

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Sven Laumer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Wird lehrstuhlspezifisch bekannt gegeben</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden erhalten die Möglichkeit, ihre bisher erworbenen Grundkenntnisse im Rahmen einer Projektarbeit auf eine praxisnahe Problemstellung anzuwenden.</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine Voraussetzungen erforderlich</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsspan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>schriftlich/mündlich Seminararbeit und Präsentation (70% + 30%)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>schriftlich/mündlich (100%) Seminararbeit und Präsentation (70% + 30%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 80 h
| | | Eigenstudium: 220 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Siehe Lehrstuhlwebsites |

Stand: 29. September 2023
1 Modulbezeichnung 93450 | Theoretische Informatik für Wirtschaftsinformatik
Theoretical Computer Science for Business Informatics | 5 ECTS

2 Lehrveranstaltungen | Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.

3 Lehrende | -

4 Modulverantwortliche/r | apl.Prof. Dr. Stefan Milius

5 Inhalt
Grundlegende Begriffe und Kernergebnisse der Automatentheorie, Berechenbarkeits- und Komplexitätstheorie werden überblickhaft behandelt:
- endliche Automaten und reguläre Grammatiken und Sprachen
- Kellerautomaten, kontextfreie Grammatiken und Sprachen
- Turingmaschinen und berechenbare Funktionen
- Primitiv rekursive und m-rekursive Funktionen
- LOOP- und WHILE-Berechenbarkeit
- Entscheidbare Sprachen und Unentscheidbarkeit
- Chomsky-Hierarchie
- Komplexitätsklassen P und NP
- NP-Vollständigkeit

6 Lernziele und Kompetenzen
Fachkompetenz
Wissen
Die Studierenden geben elementare Definitionen und Fakten zu formalen Sprachen und entsprechenden Maschinenmodellen und Grammatiken wieder.
Verstehen
Die Studierenden
- erklären grundlegende Konzepte der Begriffe der Automaten- und Berechenbarkeits- und Komplexitätstheorie.
- beschreiben Beispiele dieser Konzepte.
- erläutern grundlegende Konstruktionen, Algorithmen und wesentliche Resultate und entsprechende Beweise (z.B. Unentscheidbarkeit des Halteproblems).
Anwenden
Die Studierenden
- wenden grundlegende Beweisverfahren der theoretischen Informatik an (z.B. Induktionsbeweise, Pumping-Lemma, Reduktionen).
Analysieren
Die Studierenden
- analysieren formale Sprachen und ermitteln ihre Zugehörigkeit zu den Klassen der Chomsky-Hierarchie.
- untersuchen die Entscheidbarkeit von vorgelegten formalen Sprachen.
analysieren die Komplexität eine Entscheidungsproblem und
classifizieren es als Problem in P, NP bzw. NP-vollständig.

* Lern- bzw. Methodenkompetenz
 Die Studierenden
 - beherrschen das grundsätzliche Konzept des Beweises
 als hauptsächliche Methode des Erkenntnisgewinns in
der theoretischen Informatik. Sie überblicken abstrakte
 Begriffssarchitekturen.
 - vollziehen mathematische Argumentationen nach, erklären
 diese, führen diese selbst und legen sie schriftlich nieder.

* Sozialkompetenz
 Die Studierenden lösen Probleme in kollaborativer Gruppenarbeit und
 präsentieren erarbeitete Lösungen.

| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Studienverlaufsplan | Semester: 4 |
| 9 | Verwendbarkeit des Moduls | Pflichtbereich (Methodenkompetenz) Bachelor of Science Wirtschaftsinformatik 20152
Pflichtbereich und SQ Bachelor of Science Wirtschaftsinformatik 20182
Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232 |
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 56 h
Eigenstudium: 94 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83465</td>
<td>WIN-Projektwoche</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>WIN project week</td>
<td>Sonstige Lehrveranstaltung: WIN-Projektwoche (4 SWS)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Prof. Dr. Michael Amberg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Prof. Dr. Michael Amberg</td>
<td>Ziel der WIN-Projektwoche ist es, den Studierenden den Einstieg in den Bachelorstudiengang der Wirtschaftsinformatik (WI) zu erleichtern und sich mit einem ersten Projekt (Fallstudie) in kleinen Gruppen auseinanderzusetzen. Der erleichterte Studieneinstieg soll stattfinden, indem die Studierenden die Möglichkeit erhalten, sich gegenseitig und andere Kommilitonen aus höheren Semestern sowie die WI-Lehrstühle kennenzulernen. Neben dem Projekt nehmen die Studierenden an einem Unternehmensplanspiel in Gruppen teil. In dieser computergestützten Simulation eines Unternehmens und seines Marktes müssen sie sich mit ersten Entscheidungsprozessen auseinandersetzen. Dauer: 3 Tage geblockt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Verwendbarkeit des Moduls</th>
<th>Studien- und Prüfungsleistungen</th>
<th>Berechnung der Modulnote</th>
<th>Turnus des Angebots</th>
<th>Arbeitsaufwand in Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>Keine</td>
<td>Semester: 1</td>
<td>Pflichtbereich Bachelor of Science Wirtschaftsinformatik 20232</td>
<td>Hausarbeit</td>
<td>Hausarbeit (100%)</td>
<td>in jedem Semester</td>
<td>Präsenzzeit: 30 h, Eigenstudium: 120 h</td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>https://www.it-management.rw.fau.de/lehre/bachelor/win-projektwoche/</td>
</tr>
</tbody>
</table>
Wahlpflichtbereich
Wirtschaftswissenschaften
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Buchführung Accounting</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Übung: Übung Buchführung (0 SWS) Tutorium: Stud. Tutorium: Buchführung (0 SWS)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Marius Weiß</td>
<td></td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr. Frank Hechtner |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
<th>Darstellung der Grundlagen der Buchführung und buchhalterische Behandlung der wichtigsten Geschäftsvorgänge anhand von einzelnen Fällen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Buchführungspflicht, Inventar und Bilanz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erfolgsneutrale und -wirksame Geschäftsvorfälle, Eigenkapitalkonto und Privatkonto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wareneinkauf, Warenverkauf: Grundfälle, Erweiterungen, Umsatzsteuer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Produktion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dienstleistungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Personal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Investition: Sachanlagen, Eigenentwicklung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finanzierung: Eigenfinanzierung, Darlehen, Leasing/Miete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finanzerträge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Steuern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Zeitliche Abgrenzung (Rechnungsabgrenzungsposten, sonstige Forderungen/sonstige Verbindlichkeiten)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Rückstellungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Außerplanmäßige Abschreibungen, Forderungsbewertung, Entwicklung des Jahresabschlusses aus der laufenden Buchhaltung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gewinnverwendung</td>
</tr>
</tbody>
</table>

| 6 | Lernziele und Kompetenzen | Die Studierenden können das Konzept der doppelten Buchführung, die konkrete Verbuchung der wichtigsten Geschäftsvorgänge sowie den Zusammenhang zwischen Buchführung und Jahresabschluss darstellen. Sie können das vertiefte Wissen auf konkrete betriebliche Sachverhalte anwenden. |

| 7 | Voraussetzungen für die Teilnahme | Keine |

| 8 | Einpassung in Studienverlaufsplan | Semester: 1 |

| 9 | Verwendbarkeit des Moduls | Grundlagen- und Orientierungsprüfung (GOP) Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Wirtschaftswissenschaften Bachelor of Science Wirtschaftsinformatik 20232 |

| 10 | Studien- und Prüfungsleistungen | elektronische Prüfung (90 Minuten) |

<p>| 11 | Berechnung der Modulnote | elektronische Prüfung (100%) |</p>
<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>nur im Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 30 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 120 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Scheffler, W./Köstler, M./Oßmann, S., Buchführung, 8. Auflage, Nürnberg 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online-Lernangebote unter StudOn</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Jahresabschluss</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>82051</td>
<td>Jahresabschluss</td>
<td>Annual financial statements</td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten. |

| 3 | Lehrende | - |

| 4 | Modulverantwortliche/r | Prof. Dr. Klaus Henselmann |

| 7 | Voraussetzungen für die Teilnahme | • Vorherige Teilnahme an der Veranstaltung Buchführung
• Das Modul ist konsekutiv. |

| 8 | Einpassung in Studienverlaufsplan | Semester: 5;3;4;6 |

| 9 | Verwendbarkeit des Moduls | Wahlpflichtbereich Wirtschaftswissenschaften Bachelor of Science
Wirtschaftsinformatik 20232 |

| 10 | Studien- und Prüfungsleistungen | Klausur (60 Minuten)
Klausur 60 min |

| 11 | Berechnung der Modulnote | Klausur (100%)
Klausur 100% |

| 12 | Turnus des Angebots | nur im Sommersemester |

| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |

| 14 | Dauer des Moduls | 1 Semester |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Literaturhinweise</td>
<td>Wird im Rahmen der Veranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Kostenrechnung und Controlling</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>82350</td>
<td>Managerial accounting and controlling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Vorlesung: VLKRC (2 SWS)</td>
<td>Übung: UEKRC (2 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td></td>
<td>Tutorium: Tutorium Kostenrechnung und Controlling (0 SWS)</td>
<td></td>
<td>2,5 ECTS</td>
</tr>
</tbody>
</table>

| | Lehrende | Prof. Dr. Thomas Fischer Lena Pager Nils Kneußel Dominik Zink Christof Neunsinger Sebastian Gaschler Jonas Albers |

| | Modulverantwortliche/r | Prof. Dr. Thomas Fischer | |

	Inhalt	• Steuerungsgrößen des Controlling	
		• Kosten erfassen	
		• Kosten verteilen	
		• Kosten verrechnen	
		• Kosten entscheidungsorientiert bewerten	
		• Kosten planen und kontrollieren	
		• Kosten beeinflussen	

	Lernziele und Kompetenzen	Die Studierenden	
		• kennen den Aufbau von Kostenrechnungssystemen,	
		• beurteilen die Kostenwirkungen von betrieblichen	
		Entscheidungen und	
		wenden Instrumente des Kostenmanagements an.	

| | Voraussetzungen für die | • Erfolgreicher Abschluss der Assessmentphase | |
| | Teilnahme | • Nicht-konsekutive Lehrveranstaltung | |

| | Einpassung in | Semester: 3 | |
| | Studienverlaufsplan | | |

	Verwendbarkeit des	Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152	
	Moduls	Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182	
		Wahlpflichtbereich Wirtschaftswissenschaften Bachelor of Science	
		Wirtschaftsinformatik 20232	

| | Studien- und Prüfungsleistungen | Klausur (60 Minuten) | |

| | Berechnung der Modulnote | Klausur (100%) | |

| | Turnus des Angebots | nur im Wintersemester | |

| | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h Vorlesung und 30 h Übung, insgesamt 60 h | |
| | | Eigenstudium: 45 h Vorlesung und 45 h Übung, insgesamt 90 h | |

| | Dauer des Moduls | 1 Semester | |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>15</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Strategie, Organisation und Führung</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>85766</td>
<td>Strategy, Organization and Leadership</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Inhalt</th>
<th>Lernziele und Kompetenzen</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Verwendbarkeit des Moduls</th>
<th>Studien- und Prüfungsleistungen</th>
<th>Berechnung der Modulnote</th>
<th>Turnus des Angebots</th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Dauer des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>Seite</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Unternehmen, Märkte, Volkswirtschaften</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>82021</td>
<td>Companies, markets, economies</td>
<td></td>
</tr>
</tbody>
</table>

2	Lehrveranstaltungen	Übung: Unternehmen, Märkte, Volkswirtschaften - Softskills (2 SWS)	-
		Tutorium: Unternehmen, Märkte, Volkswirtschaften- Tutorium (2 SWS)	-
		Vorlesung: Unternehmen, Märkte, Volkswirtschaften (3 SWS)	5 ECTS

3	Lehrende	Anna Herget	
		Prof. Dr. Regina Therese Riphahn	
		Prof. Dr. Christian Merkl	
		Prof. Dr. Johannes Rincke	

4	Modulverantwortliche/r	Prof. Dr. Christian Merkl	
		Prof. Dr. Johannes Rincke	
		Prof. Dr. Regina Therese Riphahn	

5	Inhalt	• Theorie und Fallstudien aus der Mikroökonomie	
		• Theorie und Fallstudien aus der Makroökonomie	
		• Wissenschaftstheorie und empirische Konzepte der Ökonomie	

6	Lernziele und Kompetenzen	Die Studierenden	
		Teil 1	
		• erwerben anwendungsorientierte Kenntnisse über Akteure und Funktionen von Märkten.	
		• verstehen die Preisbildung auf Märkten, grundlegende Wohlfahrtskonzepte sowie das Angebotsverhalten von Unternehmen in unterschiedlichen Marktformen.	
		• erlernen grundlegende analytische Konzepte der Mikroökonomie, z. B. die komparativ-statische Analyse und die Analyse der Preissetzung von Unternehmen bei Marktmacht.	
		• üben sich in Transferleistungen durch die eigenständige Anwendung der erlernten analytischen Konzepte auf Fallbeispiele.	
		Teil 2	
		• erkennen die Bedeutung und Interpretation aggregierter Größen und können diese wiedergeben	
		• erhalten einen Überblick über wirtschaftspolitische makroökonomische Maßnahmen und können deren Wirkungen erläutern	
		Teil 3	
		• setzen sich mit wissenschaftstheoretischen Grundkonzepten auseinander und können diese erläutern.	
		• erwerben Grundkenntnisse zu empirischen Maßzahlen der VWL und der Demographie, und sind in der Lage, diese Maßzahlen zu berechnen und zu interpretieren.	

<p>| 7 | Voraussetzungen für die Teilnahme | Keine |</p>
<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlpflichtbereich Wirtschaftswissenschaften Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 45 h
| | | Eigenstudium: 105 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache| Deutsch |
| | | Teil 2: Textsammlung wird bereitgestellt.
| | | Teil 3: Textsammlung wird bereitgestellt. |
Data and knowledge
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Big Data: Technologien, Methoden und Konzepte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Big Data: Technologies, Methods, Concepts (4 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Andreas Harth</td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr. Andreas Harth |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Big Data refers to datasets that are too large or too complex to handle in traditional data management and processing systems. The course presents an overview of methods and technologies related to the storage and processing of Big Data.</td>
</tr>
<tr>
<td></td>
<td>The goal of the course will be to provide a solid foundation in the traditional design aspects relating to Distributed Computing and Distributed Databases, showing how they have influenced modern developments in cloud computing, including distributed data storage (e.g., NoSQL storage techniques) and data processing abstractions (e.g., MapReduce/Hadoop, Pregel/Giraph).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Understand why parallel processing and distributed storage are key to handling massive data</td>
</tr>
<tr>
<td></td>
<td>• Learn about the different types of Distributed Systems</td>
</tr>
<tr>
<td></td>
<td>• Learn basics of distributed communication, learn modern distributed (cloud) computation abstractions, including MapReduce and Pregel (as used by Google et al.)</td>
</tr>
<tr>
<td></td>
<td>• Learn the fundamentals of Distributed Databases, including the trade-offs between fault-tolerance, scalability, performance and economy</td>
</tr>
<tr>
<td></td>
<td>• Understand the different types of guarantees a distributed database can make, and their formal limitations</td>
</tr>
<tr>
<td></td>
<td>• Cover the taxonomy of current NoSQL stores commonly used for large-scale data management in cluster/cloud computing environments</td>
</tr>
<tr>
<td></td>
<td>• Compare and contrast the strengths and weaknesses of different data models employed by stores</td>
</tr>
<tr>
<td></td>
<td>• Learn about the different query languages employed by different stores</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Proficiency in English</td>
</tr>
<tr>
<td></td>
<td>• Some basic knowledge in databases and web technologies could be useful.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester: 3;5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data and knowledge Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur (60 Minuten)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td></td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| 13 | **Arbeitsaufwand in Zeitstunden** | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Business Analytics: Technologien, Methoden und Konzepte</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>83458</td>
<td>Business Analytics: Technologies, Methods and Concepts</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Mathias Kraus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. Patrick Zschech</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• kennen die Anwendungsfelder von Business Analytics und können grundlegende Technologien, Methoden und Konzepte einordnen,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können Grundbegriffe des Predictive Modeling und des (überwachten) maschinellen Lernens nennen,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sind in der Lage, die grundlegenden Schritte zum Aufbau eines Domänen- und Datenverständnisses, zur Exploration und Vorverarbeitung von Daten sowie zur Entwicklung und Evaluation von prädiktiven Modellen anhand eines systematischen Vorgehens zu erklären,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• beherrschen die grundlegenden Verfahren und Prinzipien des Predictive Modeling und können diese auf verschiedene</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grundkenntnisse in den Modulen Data Science: Datenauswertung und Data Science: Statistik. Grundsätzliche Programmierkenntnisse (z. B. zu Schleifen, Variablen, Funktionen, etc.) sind empfehlenswert. Die Anzahl der Teilnehmenden ist begrenzt. Einzelheiten zur Kurseinschreibung finden Sie auf der Website.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Semester: 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
</table>
| 9 | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Data and knowledge Bachelor of Science Wirtschaftsinformatik 20232 |

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Klausur (60 Minuten)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Klausur (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Arbeitsaufwand in Zeitstunden</th>
</tr>
</thead>
</table>
| 13 | Präsenzzeit: 75 h
Eigenstudium: 75 h |

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Dauer des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Unterrichts- und Prüfungssprache</th>
</tr>
</thead>
</table>
| 15 | Deutsch
Englisch |

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Alle relevanten Materialien werden während des Kurses zur Verfügung gestellt.</td>
</tr>
</tbody>
</table>

Die Studierenden
- erwerben ein grundlegendes Verständnis der Rolle des Enterprise Content Management in der Unternehmenspraxis
- kennen die Funktionalitäten und Merkmale von ECM-Systemen
- sind in der Lage, Nutzungsszenarien von ECM in Unternehmen zu analysieren und zu konzipieren
- können dank der erfolgten Rechnerübungen ein ECM-System auf verschiedenen Plattformen (u.a. Microsoft SharePoint) in seinen Grundfunktionen konfigurieren

Voraussetzungen für die Teilnahme
keine

Einpassung in Studienverlaufsplan
Semester: 3

Verwendbarkeit des Moduls
Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Data and knowledge Bachelor of Science Wirtschaftsinformatik 20232

Studien- und Prüfungsleistungen
Klausur (90 Minuten)

Berechnung der Modulnote
Klausur (100%)

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>nur im Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Englisch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Successfully Implementing Enterprise Content Management: Lessons Learnt from a Financial Service Provider</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proceedings of the 36th International Conference on Information Systems (ICIS), Fort Worth, TX, USA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laumer, S., Beimborn, D., Maier, C., and Weinert, C. (2013)</td>
</tr>
</tbody>
</table>
Modulbezeichnung 83459

Experimentelle Verhaltensforschung in Data Science
Experimental behavioral research in data science 5 ECTS

Lehrveranstaltungen

Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.

Lehrende
-

Modulverantwortliche/r Prof. Dr. Verena Tiefenbeck

Modulverantwortliche/r

Inhalt

Lernziele und Kompetenzen

Die Studierenden

- erwerben ein grundlegendes Verständnis für die Bedeutung experimenteller Forschung im Rahmen des wissenschaftlichen Erkenntnisgewinns
- können erörtern, inwiefern sich die experimentelle Methodik von anderen wissenschaftlichen Untersuchungsmethoden unterscheidet und welchen Beitrag Experimente zu wirtschaftsinformatischen Forschungsvorhaben leisten können
- können die grundlegenden Prinzipien und Designs von Experimenten erklären

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>können Designentscheidungen wissenschaftlicher Experimente kritisch reflektieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>können eigene experimentelle Designs zur Beantwortung wissenschaftlicher Fragestellungen aufstellen</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Erfolgreicher Abschluss der Veranstaltungen Data Science: Datenauswertung und Data Science: Statistik</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>10</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Data and knowledge Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>11</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur</td>
</tr>
<tr>
<td>12</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>13</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>14</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 50 h Eigenstudium: 100 h</td>
</tr>
<tr>
<td>15</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>16</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>17</td>
<td>Literaturhinweise</td>
<td>Wird zu Beginn der Veranstaltung bekannt gegeben</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Machine Learning for Business: Advanced Concepts</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Michael Amberg</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden • kennen und verstehen grundlegende sowie fortgeschrittene Konzepte und Methoden aus dem Bereich Machine Learning und können diese anwenden, • verstehen, welche Methoden und Konzepte bei spezifischen Fragestellungen Anwendung finden können, • kennen praxisrelevante Machine Learning Software und Bibliotheken und können diese im betrieblichen Kontext zur Anwendung bringen.</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>• Erfolgreicher Abschluss der Assessmentphase • Basiskenntnisse in der Programmierung mit Python</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Data and knowledge Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Präsentation Klausur</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Präsentation (50%) Klausur (50%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Seite</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>15</td>
<td>Mögliche Tutorials zur Vorbereitung unter https://www.kaggle.com/learn/overview</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Empfohlen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Python (ca. 7h)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Intro to Machine Learning (ca. 3h)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pandas (ca. 4h)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optional:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Intermediate Machine Learning (ca. 4h)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Data Visualization (ca. 4h)</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
Digital business and processes
The module covers the role of Information & Communication Technologies (ICT) in the energy transition towards a more sustainable energy production and consumption, with a particular focus on energy efficiency, the integration of renewable energy sources into the electric grid, and the reduction of greenhouse gas emissions. The interdisciplinary module covers fundamental technical principles of conventional and renewable energy generation and sustainable energy consumption, assesses the role of ICT in the ongoing energy transition, and evaluates economic and societal challenges and implications of the approaches covered.

Specific topics include:

- Fundamentals of energy generation and consumption
- Conventional and distributed power generation
- Introduction to energy markets and economic aspects
- Smart grid and smart metering infrastructures, virtual power plants, energy communities
- Wireless technologies and their impact on future mobility and energy networks
- Demand side management and home automation
- Changing consumer behavior with smart ICT
- Smart heating, electric mobility

At the beginning of the course, fundamental principles of energy generation and consumption are taught, so that students without prior knowledge in the field of energy can successfully participate in the course.

The module covers the role of Information & Communication Technologies (ICT) in the energy transition towards a more sustainable energy production and consumption, with a particular focus on energy efficiency, the integration of renewable energy sources into the electric grid, and the reduction of greenhouse gas emissions. The interdisciplinary module covers fundamental technical principles of conventional and renewable energy generation and sustainable energy consumption, assesses the role of ICT in the ongoing energy transition,
and evaluates economic and societal challenges and implications of the approaches covered.

Specific topics include:

- Fundamentals of energy generation and consumption
- Conventional and distributed power generation
- Introduction to energy markets and economic aspects
- Smart grid and smart metering infrastructures, virtual power plants, energy communities
- Wireless technologies and their impact on future mobility and energy networks
- Demand side management and home automation
- Changing consumer behavior with smart ICT
- Smart heating, electric mobility

At the beginning of the course, fundamental principles of energy generation and consumption are taught, so that students without prior knowledge in the field of energy can successfully participate in the course.

The module is designed to enable participants to

- explain the basic physical and technical principles of energy generation and power grids and apply them in calculations,
- state, explain, and evaluate the necessity as well as challenges associated with the integration of renewable energies
- name components of a smart grid and explain their function
- explain fundamental market mechanisms (energy economics)
- understand and be able to explain the roles and intentions of the actors in the electricity market,
- examine components, market mechanisms and regulatory measures with regard to their costs, benefits and risks and critically assess evaluation approaches
- to explain the possibilities of information systems for the reduction of energy consumption in the field of indoor climate/heating and to evaluate them,
- explain the central components, variables, requirements and challenges of electromobility and explain how information systems can contribute to solving these challenges

None

Semester: 3,5

Digital business Bachelor of Science Wirtschaftsinformatik 20182
Digital business and processes Bachelor of Science Wirtschaftsinformatik 20232

Klausur
Written examination (90 minutes)

Klausur (100%)
<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>nur im Wintersemester</th>
</tr>
</thead>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
<p>| | | Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | Will be announced in class |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>E-Business und E-Commerce</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Verena Tiefenbeck</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden sind in der Lage, ... • die Konzepte E-Business und E-Commerce voneinander abzugrenzen • zentrale zugrundeliegende betriebswirtschaftliche Konzepte, Technologien und Standards zu nennen und zu erklären • Besonderheiten digitaler Geschäftsmodelle zu erklären • Beispiele für digitale Geschäftsmodelle und die IT-Unterstützung entlang der Wertschöpfungskette zu identifizieren und kritisch zu beurteilen • Chancen und Herausforderungen bei der Entwicklung und Einführung von E-Business-Anwendungen zu benennen und bei der Analyse von Praxisbeispielen zu bewerten • Das Wechselspiel zwischen BWL und Informations- und Kommunikationstechnologien anhand konkreter Beispiele zu erklären • In Gruppenarbeit unterschiedliche Aspekte des E-Business und E-Commerce anhand konkreter Fallstudien herauszuarbeiten, zu präsentieren und im Plenum zu diskutieren</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 2;4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 Digital business Bachelor of Science Wirtschaftsinformatik 20182 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital business and processes Bachelor of Science Wirtschaftsinformatik 20232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Referat (20 Minuten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klausur (60 Minuten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Referat (30%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klausur (70%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nur im Sommersemester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 60 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deutsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kurspaket mit Lehrmaterial und Literatur</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Implementing innovation</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>83455</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Kathrin Möslén</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Der Veranstaltungszyklus vermittelt zentrale Inhalte der Unterstützung und Gestaltung innovationsorientierter Unternehmens- und Wertschöpfungsstrategien im internationalen Kontext.</td>
</tr>
</tbody>
</table>

| | Lernziele und Kompetenzen | Die Studierenden • erwerben fundierte Kenntnisse über die Analyse, Unterstützung und Gestaltung innovationsorientierter Unternehmens- und Wertschöpfungsstrategien. • kennen die Stärken und Schwächen alternativer Gestaltungskonzeptionen. • erwerben praktische Einblicke in die Durchführung und methodische Unterstützung von Innovationsprojekten. • eignen sich durch gezielte Gruppenarbeiten und die interaktive Veranstaltungsform soziale Kompetenzen an, • erarbeiten sich Reflexionsvermögen und können Kommilitonen wertschätzendes Feedback geben. |

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Erfolgreiches Absolvieren der Assessmentphase</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 2;4;5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
<th>Spezielle WI 2: Innovations- und Wertschöpfungsmanagement Bachelor of Science Wirtschaftsinformatik 20152 Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
<th>Präsentation Hausarbeit</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>Präsentation (50%) Hausarbeit (50%)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>nur im Sommersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Präsenzzeit: 60 h Eigenstudium: 90 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Englisch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Literaturhinweise</th>
<th>Werden in der Vorlesung bekanntgegeben</th>
</tr>
</thead>
</table>

Stand: 29. September 2023
Modulbezeichnung 83464

Innovation strategy

5 ECTS

Lehrveranstaltungen

Vorlesung mit Übung: Innovation Strategy (2 SWS)

5 ECTS

Lehrende

Layla Hajjam
Natalie Breutner
Prof. Dr. Kathrin Möslein
Prof. Dr. Angela Roth

Modulverantwortliche/r

Prof. Dr. Kathrin Möslein
Prof. Dr. Angela Roth

Inhalt

Die Veranstaltung befasst sich mit Innovationsstrategien in Unternehmen und Unternehmensnetzwerken. Im Fokus steht insbesondere das Konzept der interaktiven Wertschöpfung, bei welchem externe Akteure aktiv in den Wertschöpfungsprozess von Produkten und Dienstleistungen eingebunden werden. Dabei wird u.a. die Rolle von IuK Technologien in Innovations- und Interaktionsprozessen in Unternehmen diskutiert und systematisch aus der Perspektive verschiedener Ebenen (Individuum, Teams, Unternehmen, Netzwerke) betrachtet. U.a. werden folgende Themenfelder adressiert:

• Konzepte und Prinzipien der interaktiven Wertschöpfung für Produkte und Dienstleistungen
• Einfluss von IuK Technologien auf Innovations- und Interaktionsprozesse
• Virtuelle Teamstrukturen
• Innovationsstrategische Implikationen
• Dienstleistungsinnovation

Lernziele und Kompetenzen

Die Studierenden

• erwerben fundierte Kenntnisse über Grundlagen der Unternehmensführung und interaktiven Wertschöpfung.
• haben grundlegende Kompetenzen zur Beurteilung der Bedeutung einer strategischen und operativen Gestaltung von verteilten Arbeits-, Organisations- und Kooperationsformen und interaktiven Wertschöpfungssystemen.
• erarbeiten sich grundlegende Kenntnisse beim Einsatz von IuK-Technologien zur Förderung von Innovation und Wertschöpfung im Unternehmen.
• ermitteln grundlegende Erfolgsfaktoren des Einsatzes von Innovationstechnologie und können diese erläutern.
• erlernen Werkzeuge, Prozesse und Systeme der Dienstleistungsinnovation
• eignen sich durch gezielte Gruppenarbeiten soziale Kompetenzen an und können Kommilitonen wertschätzendes Feedback geben.
• übertragen erlernte Theorien in praktische Anwendungsszenarien und entwickeln einen Transfer der Theorie in die Praxis

Voraussetzungen für die Teilnahme

Erfolgreiches Absolvieren der Assessmentphase

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 5;3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Kernbereich (Fachkompetenz) Bachelor of Science Wirtschaftsinformatik 20172 Digital business Bachelor of Science Wirtschaftsinformatik 20182 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Digital business and processes Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 30 h Eigenstudium: 120 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Werden in der Vorlesung bekanntgegeben</td>
</tr>
</tbody>
</table>
| 1 | Modulbezeichnung 82455 | Service Management und Service Engineering
Service management and service engineering | 5 ECTS |
| 2 | Lehrveranstaltungen | Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten. |
| 3 | Lehrende | - |
| 4 | Modulverantwortliche/r | Prof. Dr. Martin Matzner |
| 6 | Lernziele und Kompetenzen | Die Studierenden
• beherrschen Grundkonzepte der Dienstleistungsforschung,
• verstehen die Bedeutung von IT-Artefakten für das Dienstleistungsmanagement,
• können Methoden und Modelle des Service Engineering zur Gestaltung von Geschäftsmodellen, Erhebung von Anforderungen, Erforschung von Prozessen, und Planung von Marketing-Konzepten anwenden,
• können Methoden und Modelle des Service Management zur Messung der Dienstleistungsqualität anwenden und
• lernen aktuelle Anwendungsbereiche der Dienstleistungsforschung und -praxis kennen (zum Beispiel digitale Plattformen und intelligente Dienstleistungen). |
| 7 | Voraussetzungen für die Teilnahme | Erfolgreiches Absolvieren der Assessmentphase. |
| 8 | Einpassung in Studienverlaufsplan | Semester: 2;4 |
| 9 | Verwendbarkeit des Moduls | Kernbereich (Fachkompetenz) Bachelor of Science Wirtschaftsinformatik 20172
Digital business Bachelor of Science Wirtschaftsinformatik 20182
Digital business and processes Bachelor of Science Wirtschaftsinformatik 20232 |
| 10 | Studien- und Prüfungsleistungen | Klausur (60 Minuten) |
| 11 | Berechnung der Modulnote | Klausur (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>16</th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Literaturverweise und Downloadmaterial im StudOn-Kurs (Link wird auf der Lehrstuhl-Website bekanntgegeben: https://www.is.rw.fau.de/lehre/veranstaltungen/service-management-und-service-engineering/).</td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
Architectures and development
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Innovation technology</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87657</td>
<td>Innovation Technology</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Innovation Technology II - Bachelor (2 SWS, SoSe 2024)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung mit Übung: Innovation Technology I (2 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Kathrin Möslein, Julius Kirschbaum, Julian Kurtz, Spyridon Koustas, Timon Sengewald</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 4 | Modulverantwortliche/r | Prof. Dr. Kathrin Möslein |
| 6 | Lernziele und Kompetenzen | Die Studierenden • erwerben einen Überblick über verschiedene im Unternehmenseinsatz befindliche Innovationstechnologien. • evaluieren deren Einsatz für unternehmerische Herausforderungen wie z.B. die Ideensuche. • entwerfen ein Konzept für eine Innovationstechnologie und prüfen deren Eignung für die Steigerung der Innovationsfähigkeit. • analysieren mögliche Geschäftsmodelle und prüfen die Auswirkungen von Innovationstechnologien auf neue Geschäftsmodelle. • eignen sich durch gezielte Gruppen- und Projektarbeiten soziale Kompetenzen an, erarbeiten sich Präsentationsvermögen und können Kommilitoninnen und Kommilitonen wertschätzendes Feedback geben. |
| 7 | Voraussetzungen für die Teilnahme | Erfolgreiches Absolvieren der Assessmentphase |
| 8 | Einpassung in Studienverlaufsplan | Semester: 4;6 |
| 9 | Verwendbarkeit des Moduls | Spezielle WI 2: Innovations- und Wertschöpfungsmanagement Bachelor of Science Wirtschaftsinformatik 20152 Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 |
| 10 | Studien- und Prüfungsleistungen | Präsentation, Hausarbeit |
| 11 | Berechnung der Modulnote | Präsentation (50%), Hausarbeit (50%) |</p>
<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>nur im Wintersemester</th>
</tr>
</thead>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 2 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Wird in der Vorlesung bekanntgegeben |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>IT-gestützte Prozessautomatisierung</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87660</td>
<td>IT-enabled process automation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Martin Matzner</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
<th>Gegenstand des Moduls ist die angewandte Betrachtung von Technologien rund um das Thema Prozessautomatisierung. Die Studierenden bearbeiten praxisnahe Themenstellungen und entwerfen Prototypen, die eine exemplarische Umsetzung aufzeigen.</th>
</tr>
</thead>
</table>
| 6 | Lernziele und Kompetenzen | Die Studierenden
 • kennen die Grundsätze von Geschäftsprozessmanagement und entwickeln ein Bewusstsein für die Relevanz von Prozessverbesserung
 • kennen Methoden und Technologien für Prozessverbesserung bzw. automatisierung und erwerben Kenntnisse über deren Anwendung
 • sind in der Lage selbstständig ein Thema zu bearbeiten und die Ergebnisse zu präsentieren |
| | Voraussetzungen für die Teilnahme | Keine |
| | Einpassung in Studienverlaufsplan | Semester: 4;6 |
| | Verwendbarkeit des Moduls | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Architectures and development Bachelor of Science
Wirtschaftsinformatik 20232 |
| | Studien- und Prüfungsleistungen | Präsentation/Hausarbeit |
| | Berechnung der Modulnote | Präsentation/Hausarbeit (100%) |
| | Turnus des Angebots | nur im Sommersemester |
| | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 120 h |
<p>| | Dauer des Moduls | 1 Semester |
| | Unterrichts- und Prüfungssprache | Deutsch |
| | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>IT-Management</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>82451</td>
<td>IT-Management</td>
<td>IT management</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

| | Lehrveranstaltungen | Seminar: IT-Management (4 SWS) | |
| | 5 ECTS |

| | Lehrende | Prof. Dr. Michael Amberg |
| | |

| | Modulverantwortliche/r | Prof. Dr. Michael Amberg |
| | Tuba Karatas | Doris Zinkl |

| | Inhalt | Unternehmen fordern von ihren Mitarbeitenden zunehmend, dass diese sich mit innovativen Technologien auseinandersetzen und die Auswirkungen des technologischen Fortschritts auf Wirtschaft und Gesellschaft einschätzen können. Mitarbeitende müssen zudem in der Lage sein, anderen den Mehrwert des technologischen Fortschritts aufzuzeigen und gut nachvollziehbare Lösungsansätze anschaulich zu präsentieren. |
| | |

	Lernziele und Kompetenzen	Die Studierenden
		• erwerben Kenntnisse über Methoden zur Analyse von innovativen Technologien und Fallstudien,
		• sind fähig, eigenständig Lösungen zu Fallstudienproblemen zu erarbeiten,
		• sind in der Lage, ihre Lösungen zu verteidigen und kritisch in der Gruppe zu diskutieren,
		• erhalten durch Diskussion und Präsentation von Lösungsansätzen die Möglichkeit ihre Soft Skills zu verbessern.

| | Voraussetzungen für die Teilnahme | Erfolgreicher Abschluss der Assessmentphase |
| | |

| | Einpassung in Studienverlaufsplan | Semester: 4;6 |
| | |

| | Verwendbarkeit des Moduls | Kernbereich (Fachkompetenz) Bachelor of Science Wirtschaftsinformatik 20172 Architectures and development Bachelor of Science Wirtschaftsinformatik 20232 |
| | |

| | Studien- und Prüfungsleistungen | Fallstudie(n) Präsentation |
| | | |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>Fallstudie(n) (50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Präsentation (50%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Prozess- und Informationsmanagement</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>83461</td>
<td>Process and information management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr. Martin Matzner
Prof. Dr. Gesine Stephan |
|---|------------------------|--------------------------|
| 5 | Inhalt | Hinweis: Das Modul läuft aus und wird nur noch für Studierende angeboten, die das Modul im Pflichtbereich ihres Studiums absolvieren müssen.
Alle Informationen zu den Inhalten und Lernzielen dieses Moduls werden durch den Lehrstuhl für Digital Industrial Service Systems bekanntgegeben. |
6	Lernziele und Kompetenzen	s.o.
7	Voraussetzungen für die Teilnahme	Erfolgreicher Abschluss der Assessmentphase
8	Einpassung in Studienverlaufsplan	Semester: 2
9	Verwendbarkeit des Moduls	Spezielle WI 3: Service-, Prozess- und Informationsmanagement
Bachelor of Science Wirtschaftsinformatik 20152		
Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152		
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h
Eigenstudium: 90 h		
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Literaturverweise und Downloadmaterial auf der Lehrstuhl-Website
https://www.is.rw.fau.de/ |

Stand: 29. September 2023
Kapitel (1): Backend

1.1. Datenmodellierung und Datenbanken

1.2. Backend-Programmierung mit Python

Kapitel (2): Frontend: HTML, CSS, JavaScript & Datenvisualisierung

2.1. HTML und CSS

2.2. JavaScript und Datenvisualisierung

Kapitel (3): Integration
Für die Gestaltung von dynamischen Web Pages ist der Zugriff auf die Daten des Backends erforderlich. Es gibt verschiedene Arten von

Kapitel (4): Usability & Trends

Weitere Informationen auf Website der vhb: https://kurse.vhb.org/VHBPORTAL/kursprogramm/kursprogramm.jsp

6 Lernziele und Kompetenzen

Weitere Informationen auf Website der vhb: https://kurse.vhb.org/VHBPORTAL/kursprogramm/kursprogramm.jsp

7 Voraussetzungen für die Teilnahme
keine

8 Einpassung in Studienverlaufsplan
Semester: 4

9 Verwendbarkeit des Moduls
Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
| | | Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Wird zu Beginn der Lehrveranstaltung bekanntgegeben. |
Wahlpflichtbereich Informatik
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97008</td>
<td>Advanced Design and Programming (5-ECTS)</td>
<td>This course teaches principles and practices of advanced object-oriented design and programming. Dieser Kurs wird auf Deutsch gehalten. It consists of a weekly lecture with exercises, homework and self-study. This is a hands-on course and students should be familiar with their Java IDE. Students learn the following concepts: Class-Level - Method design - Class design - Classes and interfaces - Subtyping and inheritance - Implementing inheritance - Design by contract Collaboration-Level - Values vs. objects - Role objects - Type objects - Object creation - Collaboration-based design - Design patterns Component-Level - Error handling - Meta-object protocols - Frameworks and components - Domain-driven design - API evolution The running example is the photo sharing and rating software Wahlzeit, see https://github.com/dirkriehle/wahlzeit. Class is held as a three hour session with a short break in between. Students should have a laptop ready with a working Java programming setup. Sign-up and further course information are available at https://adap.uni1.de - please sign up for the course on StudOn (available through previous link) as soon as possible. The course information will also tell you how the course will be held (online or in person).</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Dirk Riehle</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Students learn to recognize, analyze, and apply advanced concepts of object-oriented design and programming</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Students learn to work effectively with a realistic tool set-up, involving an IDE, configuration management, and a service hoster</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlauf</td>
<td>INF-AuD or compatible / equivalent course</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>10</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>11</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel</td>
</tr>
<tr>
<td>12</td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)</td>
</tr>
<tr>
<td>13</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>14</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
</tr>
<tr>
<td>15</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>16</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>17</td>
<td>Literaturhinweise</td>
<td>See https://adap.uni1.de</td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
Modulbezeichnung

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Analyse und Design objektorientierter Softwaresysteme mit der Unified Modeling Language (UML)</th>
<th>5 ECTS</th>
</tr>
</thead>
</table>

Lehrveranstaltungen

- Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.

Lehrende

- Modulverantwortliche/r: Prof. Dr. Detlef Kips

Inhalt

Die sogenannte "Unified Modeling Language" (UML) ist der seit Jahren weltweit akzeptierte Notationsstandard für die Modellierung komplexer Softwaresysteme. Mit einem reichhaltigen Repertoire an graphischen und textuellen Ausdrucksmöglichkeiten bietet die UML ihren Anwendern die Möglichkeit, die Anforderungen an die Zielsoftware, ihre statischen bzw. dynamischen Systemeigenschaften sowie die gewählte Softwarearchitektur halbformal zu spezifizieren, im Team darüber zu kommunizieren und große Teile des Programmcodes aus den spezifizierten Systemmodellen zu generieren.

Lernziele und Kompetenzen

Im Rahmen dieser Veranstaltung sollen die Studierenden insbesondere die Kompetenz erwerben,
- die syntaktische Struktur und die Semantik vorgegebener UML-Modelle bzw. Modellausschnitte zu analysieren und zu erläutern
- verschiedene Sprachelemente der UML (und ggf. deren Kombination) im Hinblick auf ihre Eignung zur Abbildung charakteristischer Modellierungsprobleme im Rahmen eines Softwareentwicklungsprozesses zu bewerten, auszuwählen und anzuwenden
- die Struktur und Systematik des UML-Metamodells zu erläutern und die UML mit geeigneten Metamodellierungskonzepten auf spezifische Anwendungskontexte anzupassen
- zu einer gegebenen Anforderungsdefinition im Rahmen einer systematischen Analyse- und Entwurfsmethodik ein integriertes UML-Systemmodell zu erstellen
- den Funktionsumfang eines UML-basierten Modellierungswerkzeugs zu bewerten, ein geeignetes Werkzeug auszuwählen und sicher anzuwenden.

Voraussetzungen für die Teilnahme

Keine

Einpassung in Studienverlaufsplan

- Semester: 3
| | Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
|---|---------------------------|---|
| 9 | Studien- und Prüfungsleistungen | mündlich
mündliche Einzelprüfung; Dauer (in Minuten): 30; benotet; 5 ECTS
(Vorlesung + Übung) |
| 10 | Berechnung der Modulnote | mündlich (100%) |
| 11 | Turnus des Angebots | nur im Sommersemester |
| 12 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 13 | Dauer des Moduls | 1 Semester |
| 14 | Unterrichts- und Prüfungssprache | Deutsch |
• Hitz, M.; Kappel, G.; Kapsammer, E.; Retschitzegger, W.: UML @ work, 3., aktualisierte und überarbeitete Auflage, dpunkt-Verlag, 2005
• Winter, M.: Methodische objektorientierte Softwareentwicklung, dpunkt-Verlag, 2005
• Störrle, H.: UML 2 erfolgreich einsetzen, Addison-Wesley, 2007
• Seidl, M., Brandsteidl, M., Huemer, C., Kappel, G.: UML@classroom - Eine Einführung in die objektorientierte Modellierung, dpunkt-Verlag, 2012
• Rupp, C.; Queins, S., et al. UML 2 glasklar: Praxiswissen für die UML-Modellierung, Carl Hanser Verlag, 2012
Modulbezeichnung: Angewandte IT-Sicherheit (326311)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungsform</th>
<th>Lehrveranstaltungsdauer</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Vorlesung: Angewandte IT-Sicherheit (2 SWS)</td>
<td>Vorlesung</td>
<td>2,5 ECTS</td>
<td></td>
</tr>
</tbody>
</table>

Lehrende

Dr. Ing. Ralph Palutke

Modulverantwortliche/r

Prof. Dr.-Ing. Felix Freiling

Inhalt

Wichtiger Hinweis:
Ab dem Wintersemester 2022/23 wird die neue Pflichtvorlesung "Sichere Systeme" (1. Semester, Bachelor Informatik) die Einstiegsvorlesung in den Bereich IT-Sicherheit an der FAU sein. In dieser Rolle ersetzt sie sowohl "Angewandte IT-Sicherheit" (AppITSec) als auch "Einführung in die IT-Sicherheit" (EinfITSec).

Link zum StudON-Kurs: https://www.studon.fau.de/crs4774802.html

Lernziele und Kompetenzen

Voraussetzungen für die Teilnahme

Keine

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
Weitere Literatur wird in der Vorlesung bekanntgegeben. |
1 Modulbezeichnung
247639 Approximationsalgorithmen
Approximation algorithms
7,5 ECTS

2 Lehrveranstaltungen
Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.

3 Lehrende
-

4 Modulverantwortliche/r
Prof. Dr. Rolf Wanka

5 Inhalt
Für viele kombinatorische Optimierungsprobleme hat sich herausgestellt, daß sie vermutlich nicht durch schnelle exakte Algorithmen gelöst werden können, weshalb man sich mit Nähерungslösungen zufrieden geben muß. In dieser Vorlesung werden Approximationsalgorithmen vorgestellt, die für eine Reihe populärer Optimierungsprobleme beweisbar gute Lösungen in vertretbarer Zeit berechnen.
Im ersten Teil der Veranstaltung werden die grundlegenden Begriffe vorgestellt, mit Beispielalgorithmen ausgeführt und jeweils die Grenzen aufgezeigt.
Im zweiten Teil werden allgemeine Techniken eingeführt und anhand instruktiver Beispiele mit Leben erfüllt.

6 Lernziele und Kompetenzen
Die Studierenden lernen fortgeschrittene Konzepte für die approximative Lösung kombinatorischer Optimierungsproblem kennen und wie sie sie einsetzen können, um konkrete Anwendungsprobleme zu bearbeiten. Sie kennen dazu konkrete Einzelheiten wie Begriffe, Definitionen, Fakten, Gesetzmäßigkeiten und Theorien und lernen, wie die berechneten Lösungen analysiert und qualitativ mit der unbekannten optimalen Lösung in eine mathematisch Beziehung gesetzt werden.

7 Voraussetzungen für die Teilnahme
Die Module "Einführung in die Algorithmik" bzw. "Algorithmen und Datenstrukturen" und das Modul "Berechenbarkeit und Formale Sprachen".

8 Einpassung in Studienverlaufsplan
Semester: 3

9 Verwendbarkeit des Moduls
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232

10 Studien- und Prüfungsleistungen
mündlich

11 Berechnung der Modulnote
mündlich (100%)

12 Turnus des Angebots
nur im Sommersemester

13 Arbeitsaufwand in Zeitstunden
Präsenzzeit: 60 h
Eigenstudium: 165 h

14 Dauer des Moduls
1 Semester

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>15</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch oder Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung 806144</td>
<td>Beschreibungslogik und formale Ontologien Description Logics and Formal Ontologies</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>

4	Modulverantwortliche/r	Prof. Dr. Lutz Schröder	
5	Inhalt	• Algorithmen für Aussagenlogik	
		• Tableaukalküle	
		• Anfänge der (endlichen) Modelltheorie	
		• Modal- und Beschreibungslogiken	
		• Ontologieentwurf	

| 6 | Lernziele und Kompetenzen | Fachkompetenz
Wissen
Die Studierenden geben Definitionen der Syntax und Semantik verschiedener Wissensrepräsentationssprachen wieder und legen wesentliche Eigenschaften hinsichtlich Entscheidbarkeit, Komplexität und Ausdrucksstärke dar.
Anwenden
Die Studierenden wenden Deduktionsalgorithmen auf Beispielformeln an. Sie stellen einfache Ontologien auf und führen anhand der diskutierten Techniken Beweise elementarer logischer Metaeigenschaften.
Analysieren
Die Studierenden klassifizieren Logiken nach grundlegenden Eigenschaften wie Ausdrucksstärke und Komplexität. Sie wählen für ein gegebenes Anwendungsproblem geeignete Formalismen aus.
Lern- bzw. Methodenkompetenz
Die Studierenden erarbeiten selbständig formale Beweise.
Sozialkompetenz
Die Studierenden arbeiten in Kleingruppen erfolgreich zusammen. | |

| 7 | Voraussetzungen für die Teilnahme | Keine | |
| 8 | Einpassung in Studienverlaufsplan | Semester: 4;5;6 | |
| 9 | Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 | |
10	Studien- und Prüfungsleistungen	Portfolio	
11	Berechnung der Modulnote	Portfolio (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h	
Eigenstudium: 165 h | |
<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch Englisch</td>
</tr>
</tbody>
</table>
| 16 | Literaturhinweise | • M Krötzsch, F Simancik, I Horrocks; A description logic primer, arXiv, 2012
• F. Baader et al. (ed.): The Description Logic Handbook, Cambridge University Press, 2003
• M. Huth, M. Ryan: Logic in Computer Science, Cambridge University Press, 2004
• L. Libkin: Elements of Finite Model Theory, Springer, 2004 |
Modulbezeichnung 23070
Biomedizinische Signalanalyse
Biomedical signal analysis
5 ECTS

Lehrveranstaltungen
Übung: BioSig-UE (2 SWS)
Vorlesung: Biomedizinische Signalanalyse (2 SWS)
2,5 ECTS

Lehrende
Prof. Dr. Björn Eskofier
Daniel Krauß
Katharina Jäger

Modulverantwortliche/r
Prof. Dr. Björn Eskofier
Daniel Krauß

Inhalt
Im Rahmen der Vorlesung werden (a) die Grundlagen der Generation
von wichtigen Biosignalen im menschlichen Körper, (b) die Messung von
Biosignalen und (c) Methoden zur Analyse von Biosignalen erläutert und
dargestellt.
Behandelte Biosignale sind unter anderem Aktionspotential
(AP), Elektrokardiogramm (EKG), Elektromyogramm (EMG),
Elektroenzephalogramm (EEG), oder Mechanomyogramm (MMG). Bei
der Messung liegt der Fokus beispielsweise auf der Messtechnik oder
der korrekten Sensor- bzw. Elektrodenanbringung. Im größten Teil der
Vorlesung, Analyse von Biosignalen, werden Konzepte zur Filterung für
die Artefaktreduktion, der Wavelet Analyse, der Ereigniserkennung und
der Wellenformanalyse behandelt. Zum Schluss wird einen Einblick in
überwachte Verfahren der Mustererkennung gegeben.
Für weitere Informationen, besuchen Sie bitte unseren zugehörigen
StudOn Kurs.

Content
The lecture content explains and outlines (a) basics for the generation of
important biosignals of the human body, (b) measurement of biosignals,
and (c) methods for biosignals analysis.
Considered biosignals are among others action potential
(AP), electrocardiogram (ECG), electromyogram (EMG),
electroencephalogram (EEG), or mechanomyogram (MMG). The
focus during the measurement part is for example the measurement
technology or the correct sensor and electrode placement. The main
part of the lecture is the analysis part. In this part, concepts like filtering
for artifact reduction, wavelet analysis, event detection or waveform
analysis are covered. In the end, an insight into pattern recognition
methods is obtained.
For more information, please visit our associated StudOn course

Lernziele und Kompetenzen
Die Studierenden können nach erfolgreichem Abschluss des
Kurses
Fachkompetenz
Wissen
• die Entstehung, Messung und Charakteristika der wichtigsten
 Biosignale des menschlichen Körpers wiedergeben
Verstehen

Stand: 29. September 2023
• die wesentlichen Ursachen von Artefakten in Biosignalen erklären
• Zusammenhänge zwischen der Entstehung der Biosignale des menschlichen Körpers und dem gemessenen Signal erklären
• Messmethoden der wichtigsten Biosignale erklären
• Filteroperationen zur Eliminierung von Artefakten erläutern
• bekannte Algorithmen der Verarbeitung bestimmter Biosignale erklären (z.B. Pan Tompkins für EKG)
• typische Komponenten und ihre Bedeutung in einer generischen Signalanalyse Kette erläutern
• die Struktur und Funktionsweise von Systemen zur maschinellen Klassifikation einfacher Muster darstellen

Anwenden
• Signalcharakteristiken im Zeit- und Frequenzbereich bestimmen
• Algorithmen der Biosignalverarbeitung anwenden und in Python implementieren
• Filteroperationen zur Eliminierung von Artefakten anwenden und in Python implementieren
• Methoden selbstständig auf interdisziplinäre Fragestellungen der Medizin und der Ingenieurwissenschaften anwenden
• das Ergebnis von typischen Filteroperationen abschätzen

Analysieren
• Filtercharakteristika von Schaltkreisen ableiten
• Algorithmen der Biosignalverarbeitung vergleichen
• Klassifikationsprobleme in Python lösen
• Typische Artefakte in Biosignalen erkennen und Lösungsstrategien vorschlagen

Evaluieren (Beurteilen)
• Biosignale mit medizinischen Normalwerten vergleichen und im medizinischen Kontext evaluieren
• Klassifikationsergebnisse beurteilen
• die Bedeutung der Biosignalverarbeitung für die Medizintechnik diskutieren
• Probleme in Gruppen kooperativ und verantwortlich lösen und in der Übungsgruppe bzw. im Forum diskutieren

After completion of the course, students are able to

Knowledge
• reproduce the generation, measurement, and characteristics of important biosignals of the human body

Understanding
• explain the causes of artifacts in biosignals
• explain relations between the generation of biosignals and the measured signal
• explain methods for the measurement of important biosignals
• explain filter operations for the reduction of artifacts
• explain algorithms for the analysis of important biosignals (e.g. Pan Tompkins for EKG)
• explain typical components and their importance in the signal analysis chain
• explain the structure and functioning of systems for machine learning and pattern recognition

Application
• determine signal characteristics in the time and frequency domain
• apply and implement algorithms for signal analysis in Python
• implement filter operations for the reduction of artifacts in Python
• estimate the result of filter operations
• apply methods to interdisciplinary problems in medicine and medical engineering

Analyze
• derive filter characteristics from electric circuits
• compare signal analysis algorithms
• solve classification problems in Python
• recognize typical artifacts in biosignals and propose solutions for their reduction

Evaluation
• compare biosignals with medical norm values and evaluate them in a medical context
• evaluate classification results
• discuss the importance of biomedical signal analysis for medical engineering
• solve and discuss problems in groups cooperatively in the group exercises and the online forum

Prerequisites
The Biosig lectures and exercises do not have formal requirements. However, we expect you to have some knowledge about the following topics:

• Basics of Physiology and Anatomy (High-school level)
• Basic elements of electronic circuits (resistor, capacitor, inductor) and related equations
• Basic math: Integration, Differentiation, Limits
• Fourier Transform (qualitative understanding)
• Basic filter types
• z-plane (qualitative understanding)

Furthermore, some knowledge in the following topics will be beneficial to easily understand the content of the lecture:

• Advanced filter concepts
• z-plane math / z-transform / pole-zero plots
• Frequency domain math / detailed understanding of Fourier transform and its properties
• Laplace transform
• Basics of Python (for the exercises)

If you want to refresh your knowledge on all the aforementioned topics, we recommend the following lectures and online resources: Note that some of them go beyond the requirements of this lecture for many topics!

• Signals and Systems I
• Grundlagen der Anatomie und Physiologie für Medizintechniker
• Video Series: Introduction to discrete Control (and further videos from this channel, as general introduction to filter and z-plane math)
• A visual introduction to Fourier Transform
• Udacity Python Course Course materials from the Stanford "Introduction to Scientific Python"

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 3</th>
</tr>
</thead>
</table>
| 9 | Verwendbarkeit des Moduls | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232
Electronic Exam (in presence), 90min. |
| 10| Studien- und Prüfungsleistungen | elektronische Prüfung |
| 11| Berechnung der Modulnote | elektronische Prüfung (100%) |
| 12| Turnus des Angebots | nur im Wintersemester |
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache| Englisch |
Modulverantwortliche/r
Florian Kronberger

Inhalt

Die Kursinhalte umfassen:
- Wiederholung der grundlegenden Konzepte aus den Bachelor-Pflichtvorlesungen
- Einführung und Überblick über Db2 for z/OS
- Administration von Db2 for z/OS
- Programmzugriff auf Db2 for z/OS
- Tools für Db2 for z/OS
- Angewandte Aufgaben anhand eines Praxisbeispiels
- PostgreSQL

Lernziele und Kompetenzen

Fachkompetenz
Wissen
Lernende erwerben Kenntnis der wesentlichen Begriffe aus dem Datenbank Umfeld, im Speziellen von Db2, sowie Kenntnisse über den Programmzugriff auf Datenbanken.

Kenntnisse über die administrativen Aufgaben im Datenbank-Umfeld runden das Fachwissen der Studierenden ab.

Verstehen
Die Studierenden verstehen die Arbeitsweise des Datenbanksystems Db2.

Sie können Zugriffe auf das Datenbanksystem über Programme formulieren und verstehen den Mechanismus.
Zusätzlich können sie administrative Tätigkeiten ausführen und verstehen und hinterfragen deren Wirkung.

Anwenden

Die Teilnehmer üben die Anwendung der Grundlagen aus dem Datenbankbereich im Umfeld der Db2, den Programmzugriff auf die Datenbank und Arbeiten mit SQL, zusätzlich wenden sie Administrationswerkzeuge auf die Db2-Datenbank an.

Analysieren

Am Schluss wird die Analyse und Konzeption einer Datenbankanwendung, sowie die Analyse von Datenbankzugriffen und Performanceproblemen, theoretisch und praktisch durchgeführt.

Evaluieren (Beurteilen)

Die Studierenden führen selbstständig die Evaluation einer bestehenden Datenbankarchitektur bezüglich der Effizienz und Einsetzbarkeit in einem gegebenen Kontext durch und müssen die Beurteilung von selbst erstellten Datenbankschemas und Datenbankzugriffsprogrammen erarbeiten.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 30 h Eigenstudium: 120 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Ist im StudOn-Kurs verlinkt</td>
</tr>
</tbody>
</table>
Modulbezeichnung | 44150 | Diagnostic Medical Image Processing | Diagnostic medical image processing | 5 ECTS
--- | --- | --- | --- | ---
Lehrveranstaltungen | Vorlesung: Medical Image Processing for Diagnostic Applications (VHB-Kurs) (4 SWS) | | | 5 ECTS
Lehrende | Luis Rivera Monroy | | |
| Arpitha Ravi | | |
| Manuela Meier | | |

Modulverantwortliche/r | Prof. Dr.-Ing. Andreas Maier

Inhalt

English version:
The contents of the module comprise basics about medical imaging modalities and acquisition hardware. Furthermore, details on acquisition-dependent preprocessing are covered for image intensifiers, flat-panel detectors, and MR. The fundamentals of 3D reconstruction from parallel-beam to cone-beam reconstruction are also covered. In the last chapter, rigid registration for image fusion is explained.

Deutsche Version:

Lernziele und Kompetenzen

English Version:
The participants
- understand the challenges in interdisciplinary work between engineers and medical practitioners.
- develop understanding of algorithms and math for diagnostic medical image processing.
- learn that creative adaptation of known algorithms to new problems is key for their future career.
- develop the ability to adapt algorithms to different problems.
- are able to explain algorithms and concepts of the module to other engineers.

Deutsche Version:
Die Teilnehmenden
- verstehen die Herausforderungen in der interdisziplinären Arbeit zwischen Ingenieuren und Ärzten.
- entwickeln Verständnis für Algorithmen und Mathematik der diagnostischen medizinischen Bildverarbeitung.
- erfahren, dass kreative Adaption von bekannten Algorithmen auf neue Probleme der Schlüssel für ihre berufliche Zukunft ist.
- entwickeln die Fähigkeit Algorithmen auf verschiedene Probleme anzupassen.
- sind in der Lage, Algorithmen und Konzepte des Moduls anderen Studierenden der Technischen Fakultät zu erklären.
| 7 | Voraussetzungen für die Teilnahme | Ingenieurmathematik
Engineering Mathematics |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
</tbody>
</table>
| 9 | Verwendbarkeit des Moduls | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
| 10 | Studien- und Prüfungsleistungen | schriftlich/mündlich (60 Minuten) |
| 11 | Berechnung der Modulnote | schriftlich/mündlich (100%) |
| 12 | Turnus des Angebots | in jedem Semester |
| 13 | Arbeitsaufwand in Zeitchunden | Präsenzzeit: 0 h
Eigenstudium: 150 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>eBusiness Technologies und Evolutionäre Informationssysteme</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>710850</td>
<td>eBusiness technologies and evolutionary information systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten. |

| 3 | Lehrende | - |

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Richard Lenz |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
</table>
| EBT: | Überblick und Einblick in die wichtigsten Themen des Bereichs Business
User Interface, Business Logic und Database Layer
Agile Softwareentwicklung
Integration von Enterprise-Applikationen
Cloud & Container
DevOps |
| EIS: | Grundlagen rechnergestützter Informationssysteme und organisatorisches Lernen
Erfolgsfaktoren für Projekte
Software Wartung vs. Software Evolution
Architekturmodelle
Grundprinzipien evolutionärer Systeme
Datenqualität in Informationssystemen |
| Contents: | Modern technologies to implement Web-Applications for eBusiness
User Interface, Business Logic and Database Layer
Agile Software Development
Integration of Enterprise-Applications
Cloud & Container
DevOps |
| EIT: | IT-Support for Organizational Learning
Success- and Failure Factors for large scale IT-Projects
Software Maintenance vs. Software Evolution
Architectural Styles and their Impact on Evolvability
Principles for Evolvable Systems
Data Quality in Information Systems |

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
</table>
| EBT: | Die Studierenden
identifizieren die wichtigsten Themen des Bereichs eBusiness, von den Anwendungen bis zu den Implementierungen
verstehen Zusammenhänge der B2B-Integration und der Realisierung von eBusiness-Anwendungen
wiederholen Grundlagen des Webs |
• vergleichen technische Eigenschaften von HTTP-, Web- und Application Servern
• vergleichen Markup Languages (HTML, XML)
• unterscheiden Ansätze zur Schema-Modellierung wie DTD und XML Schema und erkennen die unterschiedliche Leistungsfähigkeit
• verstehen Methoden zur evolutionsfähigen Gestaltung von Datenstrukturen in XML
• unterscheiden Vorgehen bei der Datenhaltung und verschiedene Ansätze für den Datenbankzugriff
• verstehen Objekt-relationale Mapping Frameworks am Beispiel von Hibernate und JPA
• verstehen Komponentenmodelle wie Enterprise JavaBeans (EJB) aus dem JEE Framework
• unterscheiden das EJB Komponentenmodell von den OSGi Bundles und den Spring Beans
• verstehen und unterscheiden grundlegende Web Service Techniken wie SOAP und WSDL
• unterscheiden Herangehensweisen zur dynamischen Generierung von Webseiten
• verstehen grundlegende Eigenschaften eines Java-basierten Front-End-Frameworks am Beispiel von JSF
• verstehen grundlegende Eigenschaften von Service-orientierten Architekturen (SOA)
• verstehen agile Vorgehensmodelle zur Software-Entwicklung am Beispiel von Scrum
• unterscheiden agile Verfahren wie Scrum von iterativ-inkermentellen Verfahren wie RUP
• verstehen die Wichtigkeit von Code-Beispielen um die praktische Anwendbarkeit des theoretischen Wissens zu veranschaulichen.
• können die Code-Beispiele eigenständig zur Ausführung bringen und die praktischen Erfahrungen interpretieren und bewerten
• gestalten eigene Lernprozesse selbständig.
• schätzen ihre eigenen Stärken und Schwächen im Hinblick auf die unterschiedlichen Architektur-Schichten ein (Benutzeroberfläche, Applikationslogik, Schnittstellenintegration, Datenbanksysteme)
• identifizieren eine eigene Vorstellung als zukünftige Software-Architekten und können die eigene Entwicklung planen
• reflektieren durch regelmäßige fachbezogene Fragen des Dozenten Ihre eigene Lösungskompetenz.

EIS:
Die Studierenden:
• definieren die Begriffe "Informationssysteme", "evolutionäre Informationssyste" und "organisatorisches Lernen"
• grenzen die Begriffe "Wissen" und "Information" gegeneinander ab
• charakterisieren die in der Vorlesung erläuterten Formen der organisatorischen Veränderung
• erklären das SEKI Modell nach Nonaka und Takeuchi
• nennen Beispiele für die in der Vorlesung behandelten Formen der Wissensrepräsentation in IT-Systemen
• nennen typische Erfolgs- und Risikofaktoren für große IT-Projekte
• erklären die Kraftfeldtheorie nach Kurt Lewin
• unterscheiden Typen von Software gemäß der Klassifikation nach Lehman und Belady
• unterscheiden die in der Vorlesung vorgestellten Arten der Software Wartung
• benennen die Gesetzmäßigkeiten der Software-Evolution nach Lehman und Belady
• bewerten die in der Vorlesung vorgestellten Vorgehensmodelle zur Softwareerstellung im Kontext der E-Typ-Software
• nennen die in der Vorlesung vorgestellten Aspekte der Evolutionsfähigkeit von Software
• erklären, wie die in der Vorlesung vorgestellten Methoden zur Trennung von Belangen beitragen
• erklären das Konzept des "Verzögerten Entwurfs"
• erklären die Vor- und Nachteile generischer Datenbankschemata am Beispiel von EAV und EAV/CR
• charakterisieren die in der Vorlesung vorgestellten Architekturen
• grenzen die in der Vorlesung vorgestellten Integrationsanforderungen gegeneinander ab
• erklären wie Standards zur Systemintegration beitragen und wo die Grenzen der Standardisierung liegen
• erklären das Prinzip eines Kommunikationsservers und der nachrichtenbasierten Integration
• erklären den Begriff "Prozessintegration"
• definieren den Begriff "Enterprise Application Integration" (EAI)
• unterscheiden die in der Vorlesung vorgestellten Integrationsansätze
• erklären die in der Vorlesung vorgestellten Dimensionen der Datenqualität
• unterscheiden die grundlegenden Messmethoden für Datenqualität
• erklären das Maßnahmenportfolio zur Verbesserung der Datenqualität nach Redman
• benennen die in der Vorlesung vorgestellten Methoden zur Verbesserung der Datenqualität

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Programmieren in Java, Datenbanken (SQL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester: 3</td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
| | Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
	Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232	
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h
		Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
		Englisch
16	Literaturhinweise	siehe Lehrveranstaltungsbeschreibungen
Modulbezeichnung
Effiziente kombinatorische Algorithmen
Efficient combinatorial algorithms
7,5 ECTS

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Übung: UE-EffAlg (2 SWS) Vorlesung: Effiziente kombinatorische Algorithmen (2 SWS)</th>
<th>2,5 ECTS</th>
<th>5 ECTS</th>
</tr>
</thead>
</table>

Lehrende
Prof. Dr. Rolf Wanka

Inhalt

Lernziele und Kompetenzen
Die Studierenden lernen moderne fortgeschrittene Konzepte für die schnelle exakte Lösung kombinatorischer Optimierungsprobleme kennen und wie sie einsetzen können, um konkrete Anwendungsprobleme zu bearbeiten. Sie kennen dazu konkrete fachspezifische Einzelheiten wie Begriffe, Definitionen, Fakten, Gesetzmäßigkeiten und Theorien und lernen und wie die berechneten Lösungen analysiert und qualitativ eingeordnet werden.

Voraussetzungen für die Teilnahme
Die Module "Einführung in die Algorithmik" bzw. "Algorithmen und Datenstrukturen" und das Modul "Berechenbarkeit und Formale Sprachen".

Einpassung in Studienverlaufsplan
Semester: 3

Verwendbarkeit des Moduls
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232

Dauer des Moduls
1 Semester

Unterrichts- und Prüfungsprache
Deutsch oder Englisch

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vöcking et al. (Hrsg.) Taschenbuch der Algorithmen. Springer 2008.</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Felix Freiling</th>
</tr>
</thead>
</table>

| 7 | Voraussetzungen für die Teilnahme | Keine |

| 8 | Einpassung in Studienverlauf | Semester: 3 |

| 9 | Verwendbarkeit des Moduls | Wahlfeld Bachelor of Science Wirtschaftsinformatik 201524
Verpflichtungsbereich Bachelor of Science Wirtschaftsinformatik 201824
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 202324 |

| 10 | Studien- und Prüfungsleistungen | mündlich (60 Minuten) |
| 11 | Berechnung der Modulnote | mündlich (100%) |

| 12 | Turnus des Angebots | nur im Wintersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |</p>
<table>
<thead>
<tr>
<th>15</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Fehlertolerierende Softwarearchitekturen (Vorlesung mit Übung)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Francesca Saglietti</td>
</tr>
</tbody>
</table>
| 6 | Lernziele und Kompetenzen | Die Studierenden
- klassifizieren das Fehlverhalten von Softwaresystemen im Hinblick auf Konsistenz eignenschaften (fail-silent, konsistent, byzantinis ch) und Persistenz eignenschaften (permanent, intermittierend);
- unterscheiden Redundanzarten nach der Art der redundanten Mittel (Struktur, Funktion, Information, Zeit) und nach der Art ihrer Aktivierung (statisch bzw. dynamisch);
- beschreiben Strategien zur Fehlerbehandlung im Betrieb (Fehlerausgrenzung, Fehlerbehebung, Fehlermaskierung);
- erläutern sowohl allgemeine fehlertolerante Systemkonzepte (N-Versionen- und Rücksitzblock-Programmierung) als auch konkrete Architekturen (TMR, Duplex, Dual-Dual);
- erfassen die Grundbegriffe der klassischen Zuverlässigkeits theorie (Lebensdauer, Zuverlässigkeit, Verfügbarkeit, Versagensrate, Mean Time To Failure);
- wenden analytische Ansätze zur quantitativen Bewertung redundanter Softwarearchitekturen an;
- diskutieren Ursachen der Versagensabhängigkeit von Softwarekomponenten auf Basis der Theorie von Eckhardt & Lee und des Experiments von Knight & Leveson;
- erläutern Effizienz und Effektivität von Back-to-back Teststrategien für diversitäre Systeme;
- unterscheiden Ursachen der Softwarefehlerentstehung und differenzieren Strategien zur Forcierung von Diversität während der Entwicklung. | |
| 7 | Voraussetzungen für die Teilnahme | Keine | |

Stand: 29. September 2023
Seite 117
<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 3</th>
</tr>
</thead>
</table>
| 9 | Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
| | | Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
| 10| Studien- und Prüfungsleistungen | mündlich |
| 11| Berechnung der Modulnote | mündlich (100%) |
| 12| Turnus des Angebots | nur im Wintersemester |
| 13| Arbeitsaufwand in Zeistunden | Präsenzzeit: 60 h
| | | Eigenstudium: 90 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache | Deutsch |
| 16| Literaturhinweise | |

Stand: 29. September 2023
Modulbezeichnung 792501
Forensische Informatik
Forensic computing (lecture with tutorial)
5 ECTS

Lehrveranstaltungen
Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.

Lehrende
-

Modulverantwortliche/r
Prof. Dr.-Ing. Felix Freiling

Inhalt
Forensische Informatik befasst sich mit der Sammlung, Aufbereitung und Analyse digitaler Beweismittel zur Verwendung vor Gericht. Ausgangspunkt ist jeweils der Verdacht auf einen Computereinbruch oder eine Straftat, die mit Hilfe von digitalen Geräten vorgenommen worden ist.

Dieses Modul gibt einen Überblick über die Methoden der forensischen Informatik aus einer wissenschaftlichen Perspektive.

Der Schwerpunkt liegt auf der Analyse von Dateisystemen. Ziel der Lehrveranstaltung ist nicht die Ausbildung von Forensik-Praktikern, sondern die Vermittlung von Kenntnissen, die es einem erlauben, Forschung im Bereich Computerforensik zu betreiben. Im Rahmen der Übung werden die Themen der Vorlesung im Rahmen von Fallstudien praktisch eingeübt.

Voraussichtliche Themen:
- Definition forensische Informatik
- Der forensische Prozess und seine wissenschaftliche Fundierung
- Rechtliche Rahmenbedingungen
- Sichern von Festplatten
- Analyse verschiedener Dateisysteme (FAT32, NTFS, Ext2/Ext3)
- Tools

Lernziele und Kompetenzen

Die Studierenden können Termini und Methoden der digitalen Forensik in die Entwicklung der forensischen Wissenschaften einordnen. Die Studierenden können die wesentlichen Datenstrukturen verschiedener Dateisysteme erklären. Sie können die für forensische Zwecke wesentlichen Datenstrukturen lokalisieren und geeignete Werkzeuge zu ihrer Analyse auswählen und anwenden.

Die Studierenden können digitale Spuren konkreter Fallkonstellationen durch Anwendung von Werkzeugen rekonstruieren, analysieren, interpretieren und dokumentieren. Sie lernen ihre Untersuchungsergebnisse zu präsentieren und gegenüber kritischen Nachfragen zu verteidigen.

Voraussetzungen für die Teilnahme
Keine

Einpassung in Studienverlaufsplan
Semester: 3

Verwendbarkeit des Moduls
Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</th>
</tr>
</thead>
</table>
| 10 | Studien- und Prüfungsleistungen | mündlich (30 Minuten)
Die mündliche Prüfung dauert 30 Minuten. |
| 11 | Berechnung der Modulnote | mündlich (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Formale Methoden der Softwareentwicklung</th>
<th>7,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>151316</td>
<td>Formal methods of software development</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>PD Dr.habil. Tadeusz Litak</th>
</tr>
</thead>
</table>

| 5 | Inhalt | In the first part of the course, we will engage in the formal verification of reactive systems. Students learn the syntax and semantics of the temporal logics LTL, CTL, and CTL** and their application in the specification of e.g. safety and liveness properties of systems. Simple models of systems are designed and verified using model checkers and dedicated frameworks for asynchronous and synchronous reactive systems, and the algorithms working in the background are explained. The second part of the course focuses on functional correctness of programs; more precisely, we discuss the theory of pre- and postconditions, Hoare triples, loop invariants, and weakest (liberal) preconditions, in order to introduce automatised correctness proofs using the Hoare calculus. |

| 6 | Lernziele und Kompetenzen | Students are going to acquire the following competences: Fachkompetenz Wissen • Reproduce the definition of syntax and semantics of temporal logics LTL, CTL, and CTL**. • Reproduce the definition of semantics of a simple programming languages like IMP, with special focus on axiomatic semantics (Hoare rules). • Explain how CTL can be characterised in terms of fixpoints. Verstehen The students understand the workings of state of the art automatic frameworks, clarifying the role of model checking algorithms, semantics and Hoare calculi in formal verification. Anwenden In a series of exercises, the students use state of the art tools for • model checking • specification and verification of reactive systems, • verification of functional correctness or memory safety of simple programs. Analysieren • Choose the optimal tool for a given verification or specification problem. • Differentiate between safety and liveness properties. |

Stand: 29. September 2023
• Contrast several related temporal logics (LTL, CTL, CTL**) and properties expressible/inexpressible in each of them.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td></td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td></td>
<td>mündlich</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td></td>
<td>mündlich (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td></td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 56 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 169 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td></td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>44240</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
<td>Vorlesung: Grundlagen des Übersetzerbaus (2 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
</tr>
<tr>
<td></td>
<td>Tobias Heineken</td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr. Michael Philippsen |

[Deutsch:]

Auf den ersten Blick erscheint es wenig sinnvoll, sich mit Übersetzerbau zu beschäftigen. Andere Themen scheinen wesentlich näher an der direkten Anwendbarkeit in der industriellen Praxis. Der erste Blick täuscht:

- Übersetzer gehören wohl zu den am gründlichsten studierten mittelgroßen sequentiellen Software-Systemen. Man kann viel aus den Erfahrungen lernen, die im Laufe der Jahre gesammelt wurden.
- In den Übungen, die die Vorlesung begleiten, werden Sie selbst einen (kleinen) Übersetzer entwickeln.
- Für viele Teilnehmer wird dieses Projekt das erste größere Software-Projekt sein. Viele der Algorithmen aus dem Grundstudium werden angewendet.
- Bei jedem von Ihnen verwendeten Übersetzer gehen Sie in der Regel davon aus, dass richtiger Coder erzeugt wird. In der Vorlesung erfahren Sie, wie das geforderte hohe Maß an Korrektheit und Zuverlässigkeit erreicht wird.
- Sie erlangen ein Verständnis für Konzepte von Programmiersprachen und verstehen, welcher Maschinen-Code aus Sprachkonstrukten gemacht wird. Mit diesem Wissen im Hinterkopf verbessern Sie Ihre Fähigkeit, gute und effiziente Programme zu schreiben.
- Übersetzer werden nicht nur für Programmiersprachen benötigt. Spezielle Übersetzer braucht man in vielen Bereichen des täglichen Informatik-Lebens z.B. zur Textformatierung, für Programmttransformationen, für aspektorientiertes Programmieren, für die Verarbeitung von XML, ...
- Es gehört zu einer Ingenieur-Ausbildung, in der Lage zu sein, diejenigen Werkzeuge selbst zu fertigen, die man verwendet. Für Informatiker gehört daher ein Verständnis vom Innenleben eines Übersetzers zum Rüstzeug.

Fokus der Lehrveranstaltung:

Es werden Konzepte und Techniken der Übersetzerkonstruktion aus Sicht eines Übersetzerbauers und entlang der wesentlichen Arbeitsschritte eines Übersetzers (Frontend; Mittelschicht; Backend) vorgestellt. Übungen und Praxisaufgaben ergänzen die Vorlesung. Hier entwickeln die Studierenden auf der Basis eines
vorgegebenen Programmrahmens einen eigenen Übersetzer für die Programmiersprache e2, die speziell für den Übersetzerbau-Vorlesungszyklus entworfen wurde.

Behandelte Themenfelder:
- Prinzipien der Übersetzung imperativer Programmiersprachen
- Struktur eines Übersetzers
- Symbolentschlüsse (Scanner) und Zerteiler (Parser)
- Abstrakter Syntaxbaum (AST)
- Besuchermuster
- AST-Transformationen, Entzuckerung
- Symboltabellen und Sichtbarkeitsbereiche
- Semantische Analyse: Namensanalyse, Typprüfung
- Übersetzung von arithmetischen Ausdrücken und Kontrollflusskonstrukt in registerbasierte oder stapelbasierte Zwischensprachen
- Übersetzung von Methoden und Methodenaufrufen; Methodenschachteln
- Übersetzung objektorientierter Sprachen mit Einfachvererbung, Schnittstellen und Mehrfachvererbung
- Methodenauswahl in Java (überladene und überschriebene Methoden)
- Code-Generierung nach Sethi-Ullmann, Graham-Glanville, per Baumtransformation sowie mit Hilfe dynamischer Programmierung
- Registerallokation mit lokalen Techniken und mit Graphfärbung
- Instruktionsanordnung mit "list scheduling"
- Debugger

Themen der Vorlesungseinheiten:
1. Einführung (Überblick, modulare Struktur von Übersetzern, Frontend, Mittelschicht, Backend, Bootstrapping)
2. Symbolentschlüsse (Lexer) und Zerteiler (Parser), (Token, Literale, Symboltabelle, Grammatikklassen (LK(k), LL(k), ...), konkreter Syntaxbaum, Shift-Reduce-Parser)
3. AST und semantische Analyse (abstrakter Syntaxbaum, Besuchermuster, Double Dispatch, Sichtbarkeitsbereiche, Definitionstabelle)
4. Typkonsistenz (Typsicherheit, Typsystem, Typüberprüfung, Typberechnung, Typkonvertierung, attributierte Grammatiken)
5. AST-Transformationen (Transformationsschablonen für Ausdrücke, Transformation innerer und generischer Klassen)
6. Transformation in Zwischensprache (registerbasiert versus stapelbasiert, Übersetzung von arithmetischen Ausdrücken, Zuweisungen, mehrdimensionalen Feldern, struct-Datentypen und Kontrollflussstrukturen (einschließlich Kurzschlussauswertung))
7. Methodenschachteln und Kellerrahmen (relative Adressen, call by value/reference/name, geschachtelte Funktionen, Funktionszeiger, Stack- und Framepointer, Funktionsaufruf, Prolog, Epilog)
8. Objektorientierte Sprachen I: Einfachvererbung (Symbol- und Typanalyse, Methodenauswahl mit Überschreiben und Überladen, virtuelle Methodenauftrufe, Klassendeskrptoren, dynamische Typrüfung und -wandlung)

9. Objektorientierte Sprachen II: Schnittstellen und Mehrfachvererbung (Interface v-Tables, dynamische Typrüfung und -wandlung mit Interfaces, Interfaces mit Default-Implementierung, Diamantenproblem)

11. Fortgeschrittene Code-Erzeugung (Baumtransformation, Graham-Glanville, dynamisches Programmieren)

13. Parallelismus auf Instruktionsebene, Instruktionsreihenfolge, Debugger (Konflikte im Instruktionsfließband, List Scheduling, Delay-Slots, Sprungzielvorhersage, ptrace, Unterbrechungs- und Beobachtungspunkte, DWARF)

Meilensteine der Übungsbetriebs:

Im Rahmen der Übungen (siehe entsprechende Lehrveranstaltung) werden die in der Vorlesung vorgestellten Konzepte und Techniken zur Implementierung eines Übersetzers in die Praxis umgesetzt. Ziel der Übungen ist es, bis zum Ende des Semesters einen funktionsfähigen Übersetzer für die Beispiel-Programmiersprache e2 zu implementieren. Ein Rahmenprogramm ist gegeben, das in fünf Meilensteinen um selbstentwickelte Schlüsselkomponenten zu erweitern ist.

Folgende Meilensteine sind zu erreichen:

Meilenstein 1: Grammatik, AST-Konstruktion: Antlr-Produktionen, AST-Besucherschnittschelle, generischer AST-Besucher für return und Schleifen, AST-Besucher zur Visualisierung.

Meilenstein 2: Symbolanalyse, Symboltabelle, Standardfunktionen, AST-Besucher für die Symbolanalyse.

Meilenstein 3: Konstantenfaltung per AST-Transformation, Typanalyse mit bottom-up AST-Besuch, der implizite Typwandlungen bei Bedarf ergänzt.

Meilenstein 5.0: Speicherzuteilung: Festlegung und Umsetzung der ABI Aufrufkonvention, Zuweisung von Speicheradressen zu Variablen; Kellerrahmenallokation; caller-save und callee-save Register.

Für die Meilensteine 1-3 soll der Übersetzer sowohl Integer- als auch Gleitkomma-Arithmetik unterstützen. Für die nachfolgenden Meilensteine reicht Integer-Arithmetik.

[English:]
The lecture teaches concepts and techniques of compiler construction from a compiler developer view, following the structure of the compiler frontend, middle end, and backend. Exercise sessions and practical assignments complement the lecture; the students implement their own compiler (based on a framework) for the e2 programming language, which is designed for this series of compiler construction lectures.

Content Summary
- Principles of compiling imperative programming languages
- Structure of a compiler
- Scanner and parser
- Abstract syntax trees (ASTs)
- Visitor design pattern
- AST transformations, desugaring
- Symbol tables and scopes
- Semantic analysis: name analysis, type checking
- Compilation of arithmetic expressions and control flow structures to register-based and stack-based intermediate languages
- Compilation of functions and function calls, activation records
- Compilation of object-oriented languages with single inheritance, interfaces, and multiple inheritance
- Method resolution in Java (overloaded and overridden methods)
- Code generation with Sethi-Ullmann algorithm, Graham-Glanville algorithm, tree transformations, and dynamic programming
- Register allocation with local techniques and graph coloring
- Instruction scheduling with the list scheduling technique
- Debuggers

Lecture Topics
- 1. Introduction: Class overview, modular structure of compilers (front-, middle-, and backend), compilation bootstrapping
- 2. Lexer and Parser: Tokens, literals, symbol table, grammar classes (LR(k), LL(k), ...), concrete syntax tree, shift-reduce parser
- 3. ASTs and semantic analysis: Abstract syntax tree, visitor pattern, double dispatch, scopes, definition table
- 4. Type consistency: Type safety, type system, type checks, type inference, type conversions, attributed grammars
- 5. AST transformations: Transformation patterns (arithmetics), transformation of nested and generic classes
- 6. Intermediate representations: Types of IRs, arithmetic operations, assignments, multidimensional array access, structs, control flow instructions, short-circuit evaluation
• 7. Activation record and stack frame: Relative addresses, call by value/reference/name, nested functions, function pointers, stack pointer and frame pointer, function calls: prolog and epilog
• 8. Object-oriented languages: single inheritance: Symbol and type analysis, method selection with method overloading and overriding, virtual method calls, class descriptors, dynamic type checks and casts
• 9. Object-oriented languages II: interfaces, multiple inheritance: Interface v-tables, dynamic type checks and casts with interfaces, interfaces with default implementations and state, diamond problem, virtual inheritance
• 10. Basic code generation: Code selection, register allocation, instruction order, basic blocks, optimal code generation for expression trees
• 11. Optimized code selection: Code selection as tree transformation, Graham-Glanville code generators, dynamic programming
• 12. Optimized register allocation: Performance approximations, liveness analysis, collision and interference graph, register spilling, coloring heuristics, optimistic extension, live range splitting, register coalescing, data structures
• 13. Instruction level parallelism, instruction order, debugger: Data, structural, and control conflicts in CPU pipelines, list scheduling, delay slots, branch predictions, superscalar and VLIW architectures, ptrace, break- and watch-points, DWARF

Assignment Milestones
For the assignments of this course, the students put the concepts and techniques presented in the lecture for implementing a compiler into practice. The goal of the assignments is to implement a functional compiler for the e2 programming language by the end of the semester. The e2 language is specifically designed for educational purposes; the students obtain a description of the language.

A framework for the implementation is provided to the students. The students implement the core components of the compiler in five milestones.

All milestones need to be fulfilled to pass the module; the last milestone contains two tasks. In particular, the milestones are:

• Milestone 1: Grammar definition and construction of the AST: ANTLR productions, AST visitor interface, and generic AST visitor for array accesses and return and loop statements; AST visitor for AST visualization.
• Milestone 2: Name analysis: symbol table; declaring standard functions; AST visitor for name analysis.
• Milestone 3: Constant folding and type analysis: AST transformations for constant folding; AST visitor for bottom-up type analysis, adding AST nodes for implicit casts;
• Milestone 4: AST translation to intermediate representation: AST visitor to generate IR; translation of arithmetic, return, and assign statements, logical expressions, conditions, loops.
• Milestone 5.0: Memory assignment: definition and implementation of the ABI calling convention; memory assignment of variables; stack frame allocation; caller-save and callee-save registers.
• Milestone 5.1: Code generation: implementation of the e2 standard library; IR visitor to generate assembly code.

For milestones one through three, the compiler needs to support both integer and floating-point arithmetic. For the last two milestones, only integer arithmetic is required.

[Deutsch:] Die Studierenden
• nennen die typischen Aufgaben und Datenstrukturen eines Übersetzers
• erläutern das Konzept des Bootstrapping
• beschreiben Struktur und Arbeitsweise eines Abtasters (Scanner) und zeigen Grenzen und Problemfälle auf
• wenden Grammatiken zur Konstruktion von Zerteilern (Parser) an
• kennen die Komplexität eines Zerteilers für Java
• beschreiben die wichtigsten Aufgaben der semantischen Analyse und wenden diese am Beispiel verschiedener Programmiersprachen (insbesondere Java) an
• skizzieren typische AST-Transformationen am Beispiel des Java-Übersetzers
• veranschaulichen die Grundzüge der Java-Kellermaschine und die zugehörige Transformation von Quell- zu Byte-Code
• analysieren die Unterschiede zwischen Programmiersprachen hinsichtlich Felder und Verbund-Strukturen
• erläutern die Verwendung von Stapel- und Kellerspeicher bei der Programmausführung
• kennen verschiedene Maschineninstruktionssätze
• optimieren die Registerverwendung vor der Generierung von Maschinencode
• wenden das Verfahren von Graham & Glanville zur Erzeugung von Maschinencode an
• erkennen Grenzen der Optimierung bei der Code-Generierung und analysieren alternative Strategien
• beschreiben den Unterschied zwischen statischer und dynamischer Ablaufplanung
• untersuchen Besonderheiten des Übersetzerbaus für objekt-orientierte Sprachen
• ergänzen einen vorgegebenen Abtaster und abstrakten Syntaxbaum, um alle Sprachkonstrukte einer Beispielsprache zu unterstützen
• implementieren Konstantenfaltung, den Aufbau der Symboltabelle und Typprüfung auf dem abstrakten Syntaxbaum
• erzeugen Zwischencode aus dem abstrakten Syntaxbaum
• bilden Kontrollstrukturen auf Sprünge ab
• veranschaulichen die Adressierung von (mehrdimensionalen) Feldern
• entwickeln Konventionen für Funktionsaufrufe und den Aufbau des Stacks
• berechnen Offsets für Variablen auf dem Stack.
• implementieren eine einfache Registervergabe.
• kennen Details verschiedener Prozessorarchitekturen
• generieren Maschinencode für mindestens eine Prozessorarchitektur
• implementieren eine Laufzeitbibliothek
• wenden Debugging für maschinennahen Code an

[English:] Students who have successfully completed the module will have the ability to
• identify the components and data structures of a compiler
• explain the concept of bootstrapping
• describe the structure and operation of a lexer and show limitations and problem cases
• use grammars for the construction of parsers
• know the complexity of Java parsers
• describe the main tasks of semantic analysis and apply them to different programming languages (especially Java)
• outline typical AST transformations using the Java compiler as an example
• illustrate the basic features of the Java Virtual Machine (JVM) and the corresponding transformation from source to byte code
• analyze the differences between programming languages in terms of arrays and compound structures
• explain the use of stack memory in program execution
• know different machine instruction sets
• optimize register allocation before generating machine code
• apply the Graham-Glanville algorithm to generate machine code
• recognize limitations of optimization in code generation and to analyze alternative strategies
• describe the difference between static and dynamic scheduling
• examine features of compiler construction for object-oriented languages
• augment a given lexer and abstract syntax tree to support all language constructs in an example language
• implement constant folding, symbol table construction, and type checking on the abstract syntax tree
• generate intermediate code from the abstract syntax tree
- map control structures to jumps
- translate compound boolean expressions with shortcut evaluation
- illustrate addressing of (multidimensional) arrays
- design conventions for function calls and stack frame layout
- calculate offsets for stack variables
- implement a basic register allocation.
- know details of different processor architectures
- generate machine code for at least one processor architecture
- implement a runtime library
- apply debugging to machine code

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Participants of this lecture are expected to have profound skills in the following programming languages:</td>
</tr>
<tr>
<td></td>
<td>• Java (assignments are implemented in Java)</td>
</tr>
<tr>
<td></td>
<td>• Assembler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester: 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variabel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variabel (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>Arbeitsaufwand in Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsenzzeit: 50 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 175 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>Dauer des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Unterrichts- und Prüfungssprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Modern Compiler Implementation in Java", A.W. Appel, Cambridge University Press, 1998</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Björn Eskofier Madeleine Flaucher Wolfgang Mehringer Anastasiya Zakreuskaya</th>
</tr>
</thead>
</table>

Das Modul vermittelt Konzepte, Prinzipien, Modelle, Methoden und Techniken für die effektive Entwicklung von benutzerfreundlichen Mensch-Computer-Schnittstellen. Das Thema moderner Benutzeroberflächen wird dabei für klassische Computer aber auch für mobile Geräte, eingebettete Systeme, Automobile und intelligente Umgebungen betrachtet.

Die folgenden Themen werden im Modul behandelt:
- Einführung in die Grundlagen der Mensch-Computer-Interaktion, historische Entwicklung
- Entwurfsprinzipien und Modelle für moderne Benutzeroberflächen und interaktive Systeme
- Informationsverarbeitung des Menschen, Wahrnehmung, Motorik, Eigenschaften und Fähigkeiten des Benutzers
- Interaktionsskonzepte und -stile, Metaphern, Normen, Regeln und Style Guides
- Ein- und Ausgabegeräte, Entwurfsskizzen für interaktive Systeme
- Analyse-, Entwurfs- und Entwicklungsmethoden und -werkzeuge für Benutzeroberflächen
- Prototypische Realisierung und Implementierung von interaktiven Systemen, Werkzeuge
- Architekturen für interaktive Systeme, User Interface Toolkits und Komponenten
- Akzeptanz, Evaluationsmethoden und Qualitätssicherung

Contents:
The module aims to teach basic knowledge of concepts, principles, models, methods and techniques for developing highly user-friendly Human-Computer Interfaces. Beyond traditional computer systems, modern user interfaces are also discussed in the context of automobile and intelligent environments, mobile devices and embedded systems. This module addresses the following topics:
- Introduction to the basics of Human-Computer Interaction
- Design principles and models for modern user interfaces and interactive systems
- Information processing of humans, perception, motor skills, properties and skills of the users
<table>
<thead>
<tr>
<th>Learning Objectives and Competences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students develop an understanding of models, methods and concepts in the field of Human-Computer Interaction.</td>
</tr>
<tr>
<td>They learn different approaches for designing, developing and evaluating User Interfaces and their advantages and disadvantages.</td>
</tr>
<tr>
<td>Joining the course enables students to understand and execute a development process in Human-Computer Interaction.</td>
</tr>
<tr>
<td>Students will be able to do a UI evaluation by learning the basics of information processing, perception and motoric skills of the user.</td>
</tr>
<tr>
<td>Appropriate evaluation methods, as well as acceptance and quality assurance aspects, will be learned.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152</td>
</tr>
<tr>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182</td>
</tr>
<tr>
<td>Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur</td>
</tr>
<tr>
<td>Electronic exam (in presence), 90min</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Human Factors in Security and Privacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>658644</td>
<td>Human factors in security and privacy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ECTS</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | PD Dr.habil. Zinaida Benenson |

This course provides insight into the ways in which people interact with IT security. Special attention will be paid to complex environments such as companies, governmental organizations or hospitals. A number of guest talks from practitioners and researchers highlight some of the issues in greater depth.

The course covers the following topics:

- Terminology of security and privacy, technical and non-technical protection measures
- Development and testing of usable security mechanisms (encryption and authentication tools, security policies, security warnings)
- Risk perception and decision making in security and privacy context (usage of security software, reaction to security warnings, divulging information in social media)
- Economics approach to security and privacy decision making (traditional and behavioral economics)
- Trade-offs between the national security and surveillance (psychology behind the EU data retention directive and NSA programs)
- Psychological principles of cyber fraud (scams, phishing, social engineering)
- Security awareness and user education
- Interplay of safety and security in complex systems
- Research methods in human factors (qualitative vs. quantitative research, usability testing, experimental design, survey design, interviews)

The exercises aim at deepening the understanding of the topics and are highly relevant for examinations. We plan to conduct approximately 5-6 exercises per semester; the rest of the exercises is reserved for the guest talks. A typical exercise consist of two parts:

1. For each topic, the students receive a homework assignment consisting of practical exercises.
2. For each topic, the students receive 1-3 papers to read for the next exercise. The papers will be discussed in the class with the teaching assistant.

Students develop a mindset that naturally takes into account typical psychological and physical characteristics of the users when developing or evaluating security- and privacy-enhancing technologies or policies. Students can:

- define terms "security and "privacy
- identify main research questions in the area of human factors in security and privacy
- demonstrate specific difficulties in developing and testing of usable security mechanisms
- explain main psychological principles behind the cyber fraud
- illustrate specific difficulties in awareness campaigns and user training in the realms of security and privacy
- illustrate the influence of the psychological risk perception principles (especially under- and overestimation of risk) on security and privacy decision making
- compare different approaches to the development of usable security features
- apply elements of the mental models approach and of user-centered design to development and evaluation of security- and privacy-enhancing techniques
- scan research papers and other materials for important points that clarify and deepen course contents
- structure the relation between usability and security
- contrast the approaches of traditional and behavioral economics to the explanation of security- and privacy-related behavior
- argue advantages and disadvantages of mass surveillance and other kinds of mass data collection for security and privacy of citizens
- critically appraise design and results of published user studies
- critically appraise technological solutions or policies for likely "human factors weaknesses in design and usage
- develop well-founded personal opinions on the course topics and defend them in the class discussions

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANGUAGE: This module will be held in German. Slides and all other written materials are in English. Assignments and exams are in English and can be answered in English or German. REQUIRED SKILLS: basic knowledge in the area of IT security and privacy, such as security goals (CIA), basic protection mechanisms (symmetric and asymmetric cryptography principles), cryptographic hash functions, digital certificates, PKI, basics of SSL/TLS. This knowledge can be acquired through the attendance of the module "Applied IT Security or similar modules.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (60 Minuten)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch
Englisch |
<p>| 16 | Literaturhinweise | We use classical and current research papers on usable security and privacy that will be introduced during the module. |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
<th>Modulverantwortliche/r</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44140</td>
<td>Interventional Medical Image Processing</td>
<td>Arpitha Ravi, Luis Rivera Monroy, Manuela Meier</td>
<td>English Version: This module focuses on recent developments in image processing driven by medical applications. All algorithms are motivated by practical problems. The mathematical tools required to solve the considered image processing tasks will be introduced. The module starts with an overview on preprocessing algorithms such as scatter correction for x-ray images, edge detection, super-resolution and edge-preserving noise reduction. The second chapter describes automatic image analysis using feature descriptors, key point detection, and segmentation using bottom-up algorithms such as the random walker or top-down approaches such as active shape models. Furthermore, the module covers geometric calibration algorithms for single view calibration, epipolar geometry, and factorization. The last part of the module covers non-rigid registration based on variational methods and motion-compensated image reconstruction. Deutsche Version: Das Modul ist auf die jüngsten Entwicklungen in der Verarbeitung von medizinischen Bildern ausgerichtet. Alle Algorithmen werden durch praktische Probleme motiviert. Die mathematischen Werkzeuge, die für die Bildverarbeitungsaufgaben benötigt werden, werden eingeführt. Das Modul beginnt mit einem Überblick über Vorverarbeitungsalgorithmen, wie zum Beispiel Streustrahlkorrektur für Röntgenbilder, Kantenerkennung, Superresolution und kantenerhaltende Rauschunterdrückung. Das zweite Kapitel beschreibt die automatische Bildanalyse mit Merkmalsdeskriptoren, Punkterkennung und Segmentierung mit Bottom-up-Algorithmen wie dem Random-Walker oder Top-Down-Ansätzen wie aktiven Formmodellen. Darüber hinaus deckt die Vorlesung auch geometrische Kalibrierungsalgorithmen zur Einzelansicht-Kalibrierung, Epirolegeometrie und Faktorisierung ab. Der letzte Teil des Moduls deckt nicht-starre Registrierung auf der Grundlage von Variationsmethoden und bewegungskompensierter Bildrekonstruktion ab.</td>
<td>Prof. Dr.-Ing. Andreas Maier</td>
</tr>
</tbody>
</table>
Lernziele und Kompetenzen

English Version:
The participants
- summarize the contents of the lecture.
- apply pre-processing algorithms such as scatter correction and edge-preserving filtering.
- extract information from images automatically by image analysis methods such as key point detectors and segmentation algorithms.
- calibrate projection geometries for single images and image sequences using the described methods.
- develop non-rigid registration methods using variational calculus and different regularizers.
- adopt algorithms to new domains by appropriate modifications.

Deutsche Version:
Die Teilnehmenden
- fassen die Inhalte der Vorlesung zusammen.
- wenden Vorverarbeitungsalgorithmen wie Streustrahlkorrektur und kantenerhaltende Filterung an.
- extrahieren automatisch Informationen aus Bildern, indem sie Bildanalyseverfahren wie Punktdetektoren und Segmentierungsalgorithmen verwenden.
- kalibrieren Projektionsgeometrien für Einzelbilder und Bildsequenzen mit den beschriebenen Methoden.
- entwickeln nicht-starre Registrierungsmethoden mit Hilfe von Variationsrechnung und unterschiedlichen Regularisierern.
- wenden Algorithmen auf neue Modalitäten durch entsprechende Änderungen im Algorithmus an.

Voraussetzungen für die Teilnahme

Keine

Einpassung in Studienverlaufsplan

Semester: 3

Verwendbarkeit des Moduls

Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232

Studien- und Prüfungsleistungen

schriftlich/mündlich (60 Minuten)

Berechnung der Modulnote

schriftlich/mündlich (100%)

Turnus des Angebots

in jedem Semester

Arbeitsaufwand in Zeitstunden

Präsenzzeit: 0 h
Eigenstudium: 150 h

Dauer des Moduls

1 Semester

Unterrichts- und Prüfungssprache

Englisch
| Literaturhinweise | 16 |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung/Modulnummer</th>
<th>Introduction to Machine Learning/Introduction to machine learning</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Andreas Maier</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• erklären die Stufen eines allgemeinen Mustererkennungssystems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen Abtastung, das Abtasttheorem und Quantisierung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen und implementieren Histogrammequalisierung und -dehnung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• vergleichen verschiedene Schwellwertmethoden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen lineare, verschiebungsinvariante Filter und Faltung</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
• wenden verschiedene Tief- und Hochpassfilter sowie
 nichtlineare Filter an
• wenden verschiedene Normierungsmethoden an
• verstehen den Fluch der Dimensionalität
• erklären verschiedene heuristische
 Merkmalsberechnungsmethoden, z.B. Projektion auf einen
 orthogonalen Basisraum, geometrische Momente, Merkmale
• verstehen analytische Merkmalsberechnungsmethoden, z.B.
 Hauptkomponentenanalyse, Lineare Diskriminananzanalyse
• verstehen die Basis von Repräsentationslernen
• erläutern die Grundlagen der statistischen Klassifikation
 (Bayes-Klassifikator)
• benutzen die Programmiersprache Python, um die
 vorgestellten Verfahren der Mustererkennung anzuwenden
• lernen praktische Anwendungen kennen und wenden die
 vorgestellten Algorithmen auf konkrete Probleme an

7 Voraussetzungen für die Teilnahme

A pattern recognition system consists of the following stages: Sensor Data Acquisition, Preprocessing, Feature Extraction, and Machine Classification. This module primarily deals with the first three stages and
thus creates the basis for more advanced modules (Pattern Recognition and Pattern Analysis).

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 3</th>
</tr>
</thead>
</table>
| 9 | **Verwendbarkeit des Moduls** | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
| 10 | **Studien- und Prüfungsleistungen** | Klausur (60 Minuten) |
| 11 | **Berechnung der Modulnote** | Klausur (100%) |
| 12 | **Turnus des Angebots** | nur im Sommersemester |
| 13 | **Arbeitsaufwand in Zeitstunden** | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | **Dauer des Moduls** | 1 Semester |
| 15 | **Unterrichts- und Prüfungssprache** | Englisch |
| 16 | **Literaturhinweise** | • Vorlesungsfolien/lecture slides
• Heinrich Niemann: Klassifikation von Mustern, 2. überarbeitete Auflage, 2003
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Kommunikation und Parallele Prozesse</th>
<th>7,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>173107</td>
<td>Communication and parallel processes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Lutz Schröder</th>
</tr>
</thead>
</table>
| 5 | Inhalt | • Beschrittete Transitionssysteme
• Prozessalgebren
• Starke und schwache Bisimulation
• Das Linear-Time/Branching-Time-Spektrum
• Partition Refinement
• Hennessy-Milner-Logik
• Modaler mu-Kalkül |

| 6 | Lernziele und Kompetenzen | Fachkompetenz
Wissen
Die Studierenden geben elementare Definitionen und Fakten zu reaktiven Systemen wieder.
Verstehen
Die Studierenden
• erläutern semantische Grundbegriffe, insbesondere Systemtypen und Systemäquivalenzen, und identifizieren ihre wesentlichen Eigenschaften
• erläutern die Syntax und Semantik von Logiken und Prozesskalkülen
• fassen wesentliche Metaeigenschaften von Logiken und Prozesskalkülen zusammen.
Anwenden
Die Studierenden
• übersetzen Prozessalgebraische Terme in ihre denotationelle und operationelle Semantik
• prüfen Systeme auf verschiedene Formen von Bsimilarität
• prüfen Erfüllheit modaler Fixpunktformeln in gegebenen Systemen
• implementieren nebenläufige Probleme in Prozessalgebren
• spezifizieren das Verhalten nebenläufiger Prozesse im modalen mu-Kalkül.
Analysieren
Die Studierenden
• leiten einfache Meta-Eigenschaften von Kalkülen her
• wählen für die Lösung gegebener nebenläufiger Probleme geeignete Formalismen aus
Evaluieren (Beurteilen)
Die Studierenden |

Stand: 29. September 2023
vergleichen prozessalgebraische und logische Kalküle hinsichtlich Ausdrucksmächtigkeit und Berechenbarkeitseigenschaften
hinterfragen die Eignung eines Kalküls zur Lösung einer gegebenen Problemstellung

Lern- bzw. Methodenkompetenz
Die Studierenden beherrschen das grundsätzliche Konzept des Beweises als hauptsächliche Methode des Erkenntnisgewinns in der theoretischen Informatik. Sie überblicken abstrakte Begriffsarchitekturen.
Sozialkompetenz
Die Studierenden lösen abstrakte Probleme in kollaborativer Gruppenarbeit.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4;5;6</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Portfolio</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Portfolio (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>Unregelmäßig</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 90 h
Eigenstudium: 135 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch
Englisch |
| 16 | Literaturhinweise | Robin Milner, Communication and Concurrency, Prentice-Hall, 1989
| 1 | Modulbezeichnung | Künstliche Intelligenz I
Artificial intelligence I | 7,5 ECTS |
|---|------------------|---------------------------------|
| 2 | Lehrveranstaltungen | Übung: KI I - Ü (2 SWS)
Vorlesung: Artificial Intelligence I (4 SWS) | 7,5 ECTS |
| 3 | Lehrende | PD Dr. Florian Rabe
Prof. Dr. Michael Kohlhase |
| 4 | Modulverantwortliche/r | Prof. Dr. Michael Kohlhase |
| 5 | Inhalt | Dieses Modul beschäftigt sich mit den Grundlagen der Künstlichen Intelligenz (KI), insbesondere formale Wissensrepräsentation, Heuristische Suche, Automatisches Planen und Schliessen unter Unsicherheit.

This module covers the foundations of Artificial Intelligence (AI), in particular symbolic techniques based on search and inference. |
- Anwenden: Die Konzepte werden an Beispielen aus der realen Welt angewandt (Übungsaufgaben).
- Analyse: Die Studierenden lernen die über die modellierung in der Maschine menschliche Intelligenzleistungen besser einzuschätzen. Sozialkompetenz
- Die Studierenden arbeiten in Kleingruppen zusammen um kleine Projekte zu bewältigen
Inhalt:
- Agentenmodelle als Grundlage der Künstlichen Intelligenz
- Logisches Programmieren in Prolog
- Heuristische Suche als Methode zur Problemlösung
- Zwei-Agenten-Suche (automatisierung von Brettspielen) mittels heuristischer Suche
- Constraint Solving/Propagation
- Logische Sprachen für die Wissensrepräsentation
- Inferenz and Automatisiertes Theorembeweisen (DPLL-Varianten und PL1)
- Classisches Planen
- Planen und Agieren in der wirklichen Welt.

Technical, Learning, and Method Competencies
- Knowledge: The students learn foundational representations and algorithms in AI.
- Application: The concepts learned are applied to examples from the real world (homeworks).
- Analysis: By modeling human cognitive abilities, students learn to assess and understand human intelligence better.
- Social Competences: Students work in small groups to solve an AI game-play challenge/competition (Kalah).
Contents: Foundations of symbolic AI, in particular: |
<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Portfolio (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Portfolio (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 90 h Eigenstudium: 135 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch Englisch</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Künstliche Intelligenz II</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>532733</td>
<td>Artificial intelligence II</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Michael Kohlhase</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Dieses Modul beschäftigt sich mit den Grundlagen der Künstlichen Intelligenz (KI), insbesondere mit Techniken des Schließens unter Unsicherheit, des maschinellen Lernens und der Sprachverarbeitung. Das Modul baut auf dem Modul Künstliche Intelligenz I vom Wintersemester auf und führt dieses weiter.</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Fach- Lern- bzw. Methodenkompetenz - Wissen: Die Studierenden lernen grundlegende Repräsentationsformalismen und Algorithmen der Künstlichen Intelligenz kennen. - Anwenden: Die Konzepte werden an Beispielen aus der realen Welt angewandt (Übungsaufgaben). - Analyse: Die Studierenden lernen über die Modellierung in der Maschine menschliche Intelligenzleistungen besser einzuschätzen. Sozialkompetenz - Die Studierenden arbeiten in Kleingruppen zusammen um kleine Projekte zu bewältigen. Inhalte: • Inferenz unter Unsicherheit • Bayessche Netzwerke • Rationale Entscheidungstheorie (MDPs and POMDPs) • Machinnelles Learnend und Neuronale Netzwerke • Verarbeitung Natürlicher Sprache --- This course covers the foundations of Artificial Intelligence (AI), in particular reasoning under uncertainty, machine learning and (if there is time) natural language understanding. This course builds on the course Artificial Intelligence I from the preceding winter semester and continues it. Learning Goals and Competencies Technical, Learning, and Method Competencies • Knowledge: The students learn foundational representations and algorithms in AI. • Application: The concepts learned are applied to examples from the real world (homeworks). • Analysis: By modeling human cognitive abilities, students learn to assess and understand human intelligence better. • Social Competences: Students work in small groups to solve the and machine learning challenge/competition. Contents: • Inference under Uncertainty</td>
</tr>
<tr>
<td></td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
</tbody>
</table>
| 9 | Verwendbarkeit des Moduls | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
 | | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
 | | Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 | |
| 10| Studien- und Prüfungsleistungen | Portfolio (90 Minuten) |
| 11| Berechnung der Modulnote | Portfolio (100%) |
| 12| Turnus des Angebots | nur im Sommersemester |
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 90 h
 | | Eigenstudium: 135 h | |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache| Englisch |
| 16| Literaturhinweise | Die Vorlesung folgt weitgehend dem Buch
<p>| | Deutsche Ausgabe:|
| | Literature|</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung 675137</th>
<th>Logik-Basierte Sprachverarbeitung</th>
<th>Logic-based speech representation</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Logik-Basierte Sprachverarbeitung (4 SWS)</td>
<td></td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Michael Kohlhase</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr. Michael Kohlhase | | |

| 5 | Inhalt | Grundlagen der logikbasierten Sprachverarbeitung, Syntax, Semantik-Konstruktion, und Semantische Verarbeitung natürlicher Sprache im Grammatical Framework (GF) | Fachkompetenz
Wissen
Die Studierenden beherrschen moderne, sehr expressive Formalismen zur Syntaktisch/Semantischen Analyse und Bedeutungsrepräsentation natürlicher Sprache. Sie können eingeschränkt neue Formalismen entwickeln.
Anwenden
Die Studierenden entwickeln Grammatiken und Bedeutungsrepräsentationen im Meta-Framework GF und setzen diese durch Interprätationsabbildungen in Verbindung.
Analysieren
Die Studierenden analysieren die innere Struktur natürlichsprachlicher Phrasen und Sätze. Sie wählen für eine zu repräsentierenden Phänomene geeignete Formalismen aus.
Lern- bzw. Methodenkompetenz
Die Studierenden erarbeiten selbständig formale syntaktische und semantische Repräsentationen für Natürliche Sprache
Sozialkompetenz
Die Studierenden arbeiten in Kleingruppen erfolgreich zusammen. |

| 6 | Lernziele und Kompetenzen | Fachkompetenz
Wissen
Die Studierenden beherrschen moderne, sehr expressive Formalismen zur Syntaktisch/Semantischen Analyse und Bedeutungsrepräsentation natürlicher Sprache. Sie können eingeschränkt neue Formalismen entwickeln.
Anwenden
Die Studierenden entwickeln Grammatiken und Bedeutungsrepräsentationen im Meta-Framework GF und setzen diese durch Interprätationsabbildungen in Verbindung.
Analysieren
Die Studierenden analysieren die innere Struktur natürlichsprachlicher Phrasen und Sätze. Sie wählen für eine zu repräsentierenden Phänomene geeignete Formalismen aus.
Lern- bzw. Methodenkompetenz
Die Studierenden erarbeiten selbständig formale syntaktische und semantische Repräsentationen für Natürliche Sprache
Sozialkompetenz
Die Studierenden arbeiten in Kleingruppen erfolgreich zusammen. |

| 7 | Voraussetzungen für die Teilnahme | Keine |

| 8 | Einpassung in Studienverlaufsplan | Semester: 3 |

Stand: 29. September 2023
| Nr. | Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Portfolio</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Portfolio (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch oder Englisch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Mainframe@Home</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Mainframe@Home (4 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Sebastian Wind</td>
<td></td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | PD Dr. Peter Wilke |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in das Thema Großrechner</td>
<td></td>
</tr>
<tr>
<td>Virtualisierung</td>
<td></td>
</tr>
<tr>
<td>Multiple Virtual Storage (MVS)</td>
<td></td>
</tr>
<tr>
<td>Common Business Oriented Language (Cobol)</td>
<td></td>
</tr>
<tr>
<td>Formula Translator (Fortran)</td>
<td></td>
</tr>
<tr>
<td>Restructured Extended Executor (Rexx)</td>
<td></td>
</tr>
<tr>
<td>Virtual Storage Access Method (VSAM)</td>
<td></td>
</tr>
<tr>
<td>Java und Unix auf dem Mainframe</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissen</td>
<td></td>
</tr>
<tr>
<td>Kenntnis der wesentlichen Begriffe der Mainframe-Arbeitsumgebung</td>
<td></td>
</tr>
<tr>
<td>Verständnis für das Arbeiten mit VSAM-Datasets</td>
<td></td>
</tr>
<tr>
<td>Anwenden</td>
<td></td>
</tr>
<tr>
<td>Beherrschen der wichtigsten Kommandos zur Arbeit im Mainframe Betriebssystem MVS.</td>
<td></td>
</tr>
<tr>
<td>Aufbau einer eigenen Mainframe-Emulation mit MVS Betriebssystem.</td>
<td></td>
</tr>
<tr>
<td>Verstehen</td>
<td></td>
</tr>
<tr>
<td>Analyse und Implementierung verschiedener Anwendung in den Sprache Cobol, Fortran und Rexx.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 0 h
<pre><code> | Eigenstudium: 150 h |
</code></pre>
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Auf die Literatur wird in der jeweiligen Lerneinheit im StudOn hingewiesen. |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Mainframe Programmierung Mainframe programming</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Mainframe Programmierung I (0 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Sebastian Wind</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Sebastian Wind</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Evaluation einer bestehenden Architektur bezüglich der wirtschaftlichen, technologischen und sozialen Aspekte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpaaung in Studienverlaufsplan</td>
<td>Semester: 3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>mündlich (90 Minuten)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>mündlich (100%)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 0 h Eigenstudium: 150 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Wird über StudOn zur Verfügung gestellt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Mainframe Programmierung II</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>93182</td>
<td>Mainframe programming II</td>
<td></td>
</tr>
</tbody>
</table>

| | Lehrveranstaltungen | Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten. |
| | Lehrende | - |

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Sebastian Wind</th>
</tr>
</thead>
</table>

| | Voraussetzungen für die Teilnahme | Keine |

| | Einpassung in Studienverlaufsplan | Semester: 3 |

| | Verwendbarkeit des Moduls | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |

| | Studien- und Prüfungsleistungen | mündlich (30 Minuten) |

| | Berechnung der Modulnote | mündlich (100%) |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>nur im Sommersemester</th>
</tr>
</thead>
</table>
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 0 h
Eigenstudium: 150 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache | Deutsch |
| 16| Literaturhinweise | Wird über StudOn verteilt. |
Modulbezeichnung

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Maschinelles Lernen für Zeitreihen</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>428256</td>
<td>Machine learning for time series</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Vorlesung: Maschinelles Lernen für Zeitreihen (2 SWS)</th>
<th>2,5 ECTS</th>
</tr>
</thead>
</table>

Lehrende

<table>
<thead>
<tr>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Dario Zanca</td>
</tr>
<tr>
<td>Prof. Dr. Björn Eskofier</td>
</tr>
</tbody>
</table>

Inhalt

Aim of the lecture is to teach Machine learning (ML) and Deep Learning (DL) methods for a variety of time series applications. The following topics will be covered:

- Fundamentals and an overview of applications of time series analysis.
- Fundamentals of ML methods, such as Gaussian processes, State Space models, and Autoregressive models for time series.
- Design, implementation and evaluation of ML methods in order to address time series problems.
- Advanced DL methods for time-series, such as Convolutional, Recurrent, and Attention-based models.
- Working with widely-used toolboxes that can be used for implementation of ML methods, such as Tensorflow or PyTorch.

Lernziele und Kompetenzen

- Students can describe concepts of time series problems and their wide applications in industry, medicine, finance, etc.
- Students can explain concepts of ML/DL methods in general and tackling time series problems in particular.
- Students understand the characteristics of time series data and are capable of developing and implementing ML/DL methods to model, predict and manipulate such data in concrete problems.

Voraussetzungen für die Teilnahme

This is a specialisation lecture; successful completion of the lectures "IntroPR" and/or "Pattern Recognition" / "Pattern Analysis" is recommended. Concepts taught in "IntroPR" are assumed here as basic knowledge.

Einpassung in Studienverlaufsplan

| Semester: 3 |

Verwendbarkeit des Moduls

Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232
electronic exam (remote), 90 min.

Studien- und Prüfungsleistungen

| Variabel (90 Minuten) |

Berechnung der Modulnote

| Variabel (100%) |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>nur im Wintersemester</th>
</tr>
</thead>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
 Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | |
| | | • The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer, 2009 |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Middleware-Cloud Computing</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44585</td>
<td>Middleware-cloud computing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Vorlesung: Middleware - Cloud Computing (2 SWS)</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Übung: MW-Ü (2 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: MW-RÜ (2 SWS)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
<th>PD Dr.Ing. Tobias Distler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Laura Lawniczak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harald Böhm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>PD Dr.Ing. Tobias Distler</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Überblick Cloud Computing</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen verteilter Programmierung (Web Services/Soap/Rest)</td>
</tr>
<tr>
<td></td>
<td>• Virtualisierung als Basis für Cloud Computing</td>
</tr>
<tr>
<td></td>
<td>• Infrastructure as a Service (IaaS) am Beispiel von Eucalyptus und Amazon EC2</td>
</tr>
<tr>
<td></td>
<td>• Skalierbare Verarbeitung von großen Datenmengen</td>
</tr>
<tr>
<td></td>
<td>• Interoperabilität und Multi-Cloud Computing</td>
</tr>
<tr>
<td></td>
<td>• Fehlertoleranz im Kontext von Cloud Computing</td>
</tr>
<tr>
<td></td>
<td>• Aktuelle Forschungstrends</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studierende, die das Modul erfolgreich abgeschlossen haben:</td>
</tr>
<tr>
<td></td>
<td>- erläutern verschiedene Cloud-Architekturen.</td>
</tr>
<tr>
<td></td>
<td>- stellen Vor- und Nachteile von Cloud-Computing gegenüber.</td>
</tr>
<tr>
<td></td>
<td>- unterscheiden die Herangehensweisen bei der Entwicklung von SOAP- im Vergleich zu REST-Anwendungen.</td>
</tr>
<tr>
<td></td>
<td>- organisieren den Austausch von Informationen in einer verteilten Anwendung unter Verwendung eines Verzeichnisdienstes.</td>
</tr>
<tr>
<td></td>
<td>- entwickeln eigene auf Web-Services basierende Anwendungen.</td>
</tr>
<tr>
<td></td>
<td>- erläutern die Anforderungen an ein virtualisiertes System.</td>
</tr>
<tr>
<td></td>
<td>- beschreiben die für die Virtualisierung eines Systems erforderlichen Kriterien.</td>
</tr>
<tr>
<td></td>
<td>- vergleichen zwischen unterschiedlichen Virtualisierungstechniken und -ebenen.</td>
</tr>
<tr>
<td></td>
<td>- schildern den Aufbau und die Funktionsweise von Xen und Linux-VServer.</td>
</tr>
<tr>
<td></td>
<td>- erproben das Einrichten eines Abbilds für eine virtuelle Maschine.</td>
</tr>
<tr>
<td></td>
<td>- skizzieren die Architektur einer Infrastruktur-Cloud sowie die Aufgabenbereiche hierfür zentraler Komponenten am Beispiel von Eucalyptus.</td>
</tr>
<tr>
<td></td>
<td>- erproben das Bereitstellen von Anwendungen in einer Infrastruktur-Cloud.</td>
</tr>
<tr>
<td></td>
<td>- zeigen die Grundlagen Software-definierter Netzwerke am Beispiel von Onix und B4 auf.</td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
- erläutern eine auf Vektoruhren basierende Methode zur Auflösung im Zusammenhang mit letztendlicher Konsistenz auftretender Konflikte.
- entwickeln ein verteiltes Dateisystem nach dem Vorbild von HDFS, das auf die Speicherung großer Datenmengen ausgelegt ist.
- erkunden das Bereitstellen selbst entwickelter Dienste mittels Docker.
- konzipieren eigene MapReduce-Anwendungen zur Verarbeitung strukturierter Rohdaten.
- diskutieren die Fehlertoleranzmechanismen in Google MapReduce.
- schildern die grundsätzliche Funktionsweise von Systemen zur Kühlung von Datenzentren mittels Umgebungsluft.
- beschreiben das Grundkonzept einer temperaturabhängigen Lastverteilung von Prozessen in einem Datenzentrum.
- stellen diverse Ansätze zur Erhöhung der Energieeffizienz von MapReduce-Clustern gegenüber.
- unterscheiden die Architekturen und Funktionsweisen der Koordinierungsdienste Chubby und ZooKeeper.
- entwickeln einen eigenen Koordinierungsdienst nach dem Vorbild von ZooKeeper.
- ermitteln die Konsistenzigenschaften der eigenen Koordinierungsdienstimplementierung.
- erläutern unterschiedliche Ansätze zur Reduzierung bzw. Tolerierung von Tail-Latenz.
- skizzieren das Grundkonzept von Erasure-Codes.
- beschreiben den Aufbau eines auf die Clouds mehrerer Anbieter gestützten Datenspeichersystems.
- erläutern den Einsatz passiver Replikation zur Bereitstellung von Fehlertoleranzmechanismen für virtuelle Maschinen am Beispiel von Remus.
- schildern die Grundlagen der Migration von virtuellen Maschinen.
- bewerten die Qualität einer aktuellen Publikation aus der Fachliteratur.
- erschließen sich typische Probleme (Nebenläufigkeit, Konsistenz, Skalierbarkeit) und Fehlerquellen bei der Programmierung verteilter Anwendungen.
- können in Kleingruppen kooperativ arbeiten.
- können ihre Entwurfs- und Implementierungsentscheidungen kompakt präsentieren und argumentativ vertreten.
- reflektieren ihre Entscheidungen kritisch und leiten Alternativen ab.
- können offen und konstruktiv mit Schwachpunkten und Irrwegen umgehen.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Gute Programmierkenntnisse in Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 Informatik Bachelor of Science Wirtschaftsinformatik 20182 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182</td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>Seite</th>
<th>Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td></td>
<td>Portfolio</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td></td>
<td>Portfolio (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td></td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td></td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
</tr>
<tr>
<td></td>
<td>Auf relevante Literatur wird in der Vorlesung hingewiesen.</td>
</tr>
</tbody>
</table>
| 1 | Modulbezeichnung | Monad-Based Programming
845618
Monad-based programming | 7,5 ECTS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>PD Dr.Ing. Sergey Goncharov</td>
<td></td>
</tr>
</tbody>
</table>
Schlüsselwörter: Monaden, Funktionale Programmierung, Kategorientheorie, Haskell, Equational reasoning;
Kursseite: https://www8.cs.fau.de/monad-based-programming/ |
| 6 | Fachkompetenz Wissen | Die Studierenden zeigen Verständnis der Rolle von Monaden im Kontext der funktionalen Programmierung und als semantisches Werkzeug für die Programmierung und Softwarespezifikation. Die Studierenden geben die wichtigsten Definitionen und Ergebnisse über Monaden, Monadenkombinationen und anderen kategorischen Konstrukten, sowie Produkte, Koprodukte, Funktoren, applikative Funktoren, exponentielle Objekte, wieder und erklären sie aus der Perspektive der Programmierung. |
| | Anwenden | Die Studierenden verwenden den monadenbasierten Ansatz, um Beispiele mit verschiedenen Arten von Recheneffekten als Monaden zu formalisieren. Die Studierenden verwenden Monaden für die praktische Programmierung in Programmiersprachen, insbesondere in Haskell. |
| | Analysieren | Die Studierenden identifizieren verschiedene Berechnungseffekte als Monaden und behandeln Probleme aus verschiedenen semantischen Domänen (zustandsabhängig, nichtdeterministisch, Ausnahmeverhalten) in geeigneter Weise und erstellen eine monadenbasierte Softwareimplementierung. |
Selbstkompetenz

Die Studenten werden regelmäßig mit kleinen Herausforderungen in Form von Übungen versorgt, um einen allmählichen Fortschritt mit dem Vorlesungsmaterial zu erzielen.

Voraussetzungen für die Teilnahme

Als empfohlene Voraussetzung ist "Grundlagen der Logik in der Informatik" ausreichend.

Alternativ sind allgemeine mathematische und logische Grundkenntnisse, die Sie auf jegliche Art und Weise erworben haben, ebenfalls geeignet.

Stellen Sie sicher, dass Sie die folgenden Beispielfragen sicher beantworten können, um zu beurteilen, ob der Kurs für Sie geeignet ist (eine richtige Antwort muss nicht eindeutig sein, aber wenn Sie die Frage im Wesentlichen verstehen, sollte es kein Problem sein):

- Wann sind zwei Funktionen, sagen wir f und g, von einer Menge A zu einer Menge B gleich?
- Wann sind zwei Mengen gleich?
- Wann eine Relation zwischen zwei Mengen A und B eine Funktion ist?
- Wenn eine Implikation A -> B falsch ist, muss dann auch A falsch sein? Muss B falsch sein?
- Verstehen Sie das Prinzip des "Beweis durch Widerspruch"?
- Was ist das (Kartesische) Produkt von zwei Mengen?
- Was ist eine disjunkte Vereinigung von zwei Mengen?
- Was ist das Prinzip der vollständigen Induktion?
- Erläutern Sie den Zusammenhang zwischen endlichen binären Bäumen und Termen über einer finitären Signatur. Welche Aritäten die beteiligten Operationen haben werden?
- Was sind Boolesche Konstanten?
- Wie lautet die Definition der Faktorstativfunktion? Wie lautet die Definition der Fibonacci-Zahlen?
- Wie lautet die Formel zur Berechnung der Summe der vollen Quadrate 1² + ... + n²?
- Was ist die Definition einer teilweise geordneten Menge?
- Was ist eine Äquivalenz?

Einpassung in Studienverlaufsplan

Semester: 3

Verwendbarkeit des Moduls

Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232

Studien- und Prüfungsleistungen

mündlich
Prüfungsleistung, mündliche Prüfung, Dauer (in Minuten): 30, benotet, 7.5 ECTS

Anteil an der Berechnung der Modulnote: 100.0% weitere Erläuterungen: Die Modulnote setzt sich zu 50% aus dem Ergebnis
einer 30-minütigen mündlichen Prüfung am Semesterende und zu 50% aus der Note für die Bearbeitung von 6 Übungsaufgabenblättern zusammen.

Prüfungssprache: Englisch oder Deutsch

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>mündlich (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Turnus des Angebots</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>12</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 165 h</td>
</tr>
<tr>
<td>13</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>14</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
</tbody>
</table>
Music signals possess specific acoustic and structural characteristics that are not shared by spoken language or audio signals from other domains. In fact, many music analysis tasks only become feasible by exploiting suitable music-specific assumptions. In this course, we study feature design principles that have been applied to music signals to account for the music-specific aspects. In particular, we discuss various musically expressive feature representations that refer to musical dimensions such as harmony, rhythm, timbre, or melody. Furthermore, we highlight the practical and musical relevance of these feature representations in the context of current music analysis and retrieval tasks. Here, our general goal is to show how the development of music-specific signal processing techniques is of fundamental importance for tackling otherwise infeasible music analysis problems.
Evaluieren (Beurteilen)
- Die Studierenden hinterfragen Annahmen, die implizit bei der Verwendung von Analysemethoden gemacht werden.
- Die Studierenden schätzen ein, wann Methoden bei der Analyse von gewissen Musiksignalen funktionieren könnten und wann sie typischerweise versagen.
- Die Studierenden evaluieren automatisierte Methoden mittels geeigneter Evaluationsmaße unter Verwendung von manuell erstellten Annotationen (Exercise).

Erschaffen
- Die Studierenden bereiten sich auf die Vorlesung anhand ausgewählter Literatur vor.
- Die Studierenden hinterfragen bestehende Ansätze hinsichtlich ihrer Anwendbarkeit in der Praxis.
- Die Studierenden beachten Fragen der Effizienz bei den diskutierten Algorithmen.
- Die Studierenden entwickeln praktische Lösungswege für Problem in der Musikverarbeitung (Exercise).
- Die Studierenden hinterfragen ihr Verständnis von dem Gelernten anhand von Übungsaufgaben.
- Die Studierenden formulieren Fragen und stellen diese in der Vorlesung an den Dozenten und die Zuhörerschaft.
- Die Studierenden nutzen Verbesserungshinweise des Betreuers und der Tutoren zur Verbesserung ihrer Lernstrategien (Exercise).
- Die Studierenden organisieren selbständig Lerngruppen, in denen der Stoff diskutiert und vertieft wird.
- Die Studierenden simulieren mit ihren Kommilitonen mündliche Prüfungen.
- Die Studierenden entwickeln und implementieren Software im Team (Exercise).
- Die Studierenden geben Kommilitonen im Rahmen ihrer Zusammenarbeit wertschätzendes Feedback (Exercise).

<p>| 7 | Voraussetzungen für die Teilnahme | In this course, we discuss a number of current research problems in music processing or music information retrieval (MIR) covering aspects from information science and digital signal processing. We provide the necessary background information and give numerous motivating examples so that no specialized knowledge is required. However, the students should have a solid mathematical background. The lecture is accompanied by readings from textbooks or the research literature. Furthermore, the students are required to experiment with the presented algorithms using Python. |
| 8 | Einpassung in Studienverlaufsplan | Semester: 3 |
| 9 | Verwendbarkeit des Moduls | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td></td>
<td>Portfolio</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td></td>
<td>Portfolio (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td></td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td></td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
</tr>
<tr>
<td></td>
<td>Meinard Müller</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Music Processing</td>
</tr>
<tr>
<td></td>
<td>Using Python and Jupyter Notebooks</td>
</tr>
<tr>
<td></td>
<td>2nd edition, 495 p., hardcover</td>
</tr>
<tr>
<td></td>
<td>ISBN: 978-3-030-69807-2</td>
</tr>
<tr>
<td></td>
<td>Springer, 2021</td>
</tr>
<tr>
<td></td>
<td>http://www.music-processing.de/</td>
</tr>
<tr>
<td></td>
<td>https://www.audiolabs-erlangen.de/FMP</td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Nailing your Thesis (PROJ 5-ECTS)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>580491</td>
<td>Nailing your thesis (PROJ 5-ECTS)</td>
<td></td>
</tr>
</tbody>
</table>

| Lehrveranstaltungen | Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen. |

| Lehrende | - |

| Modulverantwortliche/r | Prof. Dr. Dirk Riehle |

| Inhalt | This course teaches students how to perform scientific research for their final thesis or a research paper. The goal is to prepare students for a Bachelor or Master research thesis. The course covers the following topics:
• Science and society
• The research process
• Theory building research
• Theory validation research
• Writing a research thesis/paper
• The scientific community
Students can choose one or both of two components:
• VUE (VL + UE or seminar), 4 SWS, 5 ECTS. VUE combines lectures with homework and exercises. VUE is run as a 3h block.
• PROJ (small research project), 2 SWS, 5 ECTS. In PROJ, students perform a small research project, either individually or in teams. The available projects will be presented at the beginning of the course. Students perform the research, write a paper, and hold a presentation about their work.
Sign-up and further course information are available at https://nyt.uni1.de - please sign up for the course on StudOn (available through previous link) as soon as possible.
The course information will also tell you how the course will be held (online or in person). |

| Lernziele und Kompetenzen | • Students gain an understanding of how science works
• Students learn how to perform research work
• Students learn how to write a research thesis |

| Voraussetzungen für die Teilnahme | Keine |

| Einpassung in Studienverlaufsplan | Semester: 3 |

| Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |

| Studien- und Prüfungsleistungen | Portfolio |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Thema</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Portfolio (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 0 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 150 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>See https://nyt.uni1.de</td>
</tr>
<tr>
<td>Modulbezeichnung 480491</td>
<td>Nailing your Thesis (VUE 5-ECTS) Nailing your thesis (VUE 5-ECTS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
<td></td>
</tr>
<tr>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Dirk Riehle</td>
<td></td>
</tr>
</tbody>
</table>
| Inhalt | This course teaches students how to perform scientific research for their final thesis or a research paper. The goal is to prepare students for a Bachelor or Master research thesis. The course covers the following topics:
 - Science and society
 - The research process
 - Theory building research
 - Theory validation research
 - Writing a research thesis/paper
 - The scientific community
Students can choose one or both of two components:
 - VUE (VL + UE or seminar), 4 SWS, 5 ECTS. VUE combines lectures with homework and exercises. VUE is run as a 3h block.
 - PROJ (small research project), 2 SWS, 5 ECTS. In PROJ, students perform a small research project, either individually or in teams. The available projects will be presented at the beginning of the course. Students perform the research, write a paper, and hold a presentation about their work.
Sign-up and further course information are available at https://nyt.uni1.de - please sign up for the course on StudOn (available through previous link) as soon as possible. The course information will also tell you how the course will be held (online or in person). | |
| Lernziele und Kompetenzen | • Students gain an understanding of how science works
• Students learn how to perform research work
• Students learn how to write a research thesis | |
| Voraussetzungen für die Teilnahme | Keine | |
| Einpassung in Studienverlaufsplan | Semester: 3 | |
| Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 | |
| Studien- und Prüfungsleistungen | Portfolio | |
| Berechnung der Modulnote | Portfolio (100%) | |
| Turnus des Angebots | nur im Sommersemester | |

Stand: 29. September 2023
| | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Eigenstudium: 90 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>See https://nyt.uni1.de</td>
</tr>
</tbody>
</table>
This course teaches agile methods (Scrum and XP) and open source tools using a single semester-long project. Topics covered are:

- Agile methods and related software development processes
- Scrum roles, process practices, including product and engineering management
- Technical practices like refactoring, continuous integration, and test-driven development
- Principles and best practices of open source software development

The project is a software development project in which each student team works with an industry partner who provides the idea for the project. This is a practical hands-on experience. Students can play one of two primary roles:

- Product owner. In this function, a student defines, prioritizes, communicates, and reviews requirements. The total effort adds up to 5 ECTS.
- Software developer. In this function, a student estimates their effort for requirements and implements them. The total effort adds up to 10 ECTS.

Students will be organized into teams of 7-8 people, combining product owners with software developers. An industry partner will provide requirements to be worked out in detail by the product owners and to be realized by the software developers. The available projects will be presented in the run-up to the course.

Class consists of a 90min lecture followed by a 90min team meeting. Rooms and times for team meetings are assigned at the beginning of the semester.

You must be able to regularly participate in the team meetings. If you can't, do not sign up for this course. Students choosing the software developer role must have prior software development experience.

Sign-up and further course information are available at https://amos.uni1.de - please sign up for the course on StudOn (available through previous link) as soon as possible.

The course information will also tell you how the course will be held (online or in person).
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | |
The AMOS Project (SD Role, VUE 10 ECTS)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>The AMOS Project (SD Role)</th>
<th>10 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Dirk Riehle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voraussetzungen für die Teilnahme</td>
<td>For software developer role: OSS-ADAP</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
<p>| | | Eigenstudium: 240 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache | Englisch |
| 16| Literaturhinweise |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Pattern Recognition</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44130</td>
<td>Pattern recognition</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Übung: PR Exercise (1 SWS) Vorlesung: Pattern Recognition (3 SWS)</td>
<td>1,25 ECTS 3,75 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Paul Stöwer Siming Bayer Prof. Dr.-Ing. Andreas Maier</td>
<td></td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Andreas Maier |

| 5 | Inhalt | Mathematical foundations of machine learning based on the following classification methods:
• Bayesian classifier
• Logistic Regression
• Naive Bayes classifier
• Discriminant Analysis
• norms and norm dependent linear regression
• Rosenblatt's Perceptron
• unconstraint and constraint optimization
• Support Vector Machines (SVM)
• kernel methods
• Expectation Maximization (EM) Algorithm and Gaussian Mixture Models (GMMs)
• Independent Component Analysis (ICA)
• Model Assessment
• AdaBoost
Mathematische Grundlagen der maschinellen Klassifikation am Beispiel folgender Klassifikatoren:
• Bayes-Klassifikator
• Logistische Regression
• Naiver Bayes-Klassifikator
• Diskriminanzanalyse
• Normen und normabhängige Regression
• Rosenblatts Perzepton
• Optimierung ohne und mit Nebenbedingungen
• Support Vector Maschines (SVM)
• Kernelmethoden
• Expectation Maximization (EM)-Algorithmus und Gaußsche Mischverteilungen (GMMs)
• Analyse durch unabhängige Komponenten
• Modellbewertung
• AdaBoost |

| 6 | Lernziele und Kompetenzen | Die Studierenden
• verstehen die Struktur von Systemen zur maschinellen Klassifikation einfacher Muster
• erläutern die mathematischen Grundlagen ausgewählter maschineller Klassifikatoren
• wenden Klassifikatoren zur Lösung konkreter Klassifikationsproblem an |
<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>• beurteilen unterschiedliche Klassifikatoren in Bezug auf ihre Eignung</td>
<td></td>
</tr>
<tr>
<td>• verstehen in der Programmiersprache Python geschriebene Lösungen von Klassifikationsproblemen und Implementierungen von Klassifikatoren</td>
<td></td>
</tr>
</tbody>
</table>

Students

• understand the structure of machine learning systems for simple patterns
• explain the mathematical foundations of selected machine learning techniques
• apply classification techniques in order to solve given classification tasks
• evaluate various classifiers with respect to their suitability to solve the given problem
• understand solutions of classification problems and implementations of classifiers written in the programming language Python

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152</td>
<td></td>
</tr>
<tr>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182</td>
<td></td>
</tr>
<tr>
<td>Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (90 Minuten)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (100%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>nur im Wintersemester</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>Arbeitsaufwand in Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 60 h</td>
<td></td>
</tr>
<tr>
<td>Eigenstudium: 90 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>Dauer des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Unterrichts- und Prüfungssprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch oder Englisch</td>
<td></td>
</tr>
<tr>
<td>Englisch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>Literaturhinweise</th>
</tr>
</thead>
</table>

Stand: 29. September 2023
<p>| • Christopher M. Bishop: Pattern Recognition and Machine Learning, Springer, New York, 2006 |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Praktikum Informatik in der Bildung (PIB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>93149</td>
<td>Laboratory: Computer science in education (PIB)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Praktikum: Praktikum Informatik in der Bildung (4 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Marc-Pascal Berges</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Marc-Pascal Berges</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Die Studierenden erstellen fachdidaktische Materialien zu aktuellen Themen aus den Schulcurricula oder der fachdidaktischen Forschung. Sie arbeiten dabei im Team. Außerdem erstellen Sie zu den erstellten Materialien eine fachdidaktische Analyse und ein Einsatzszenario. Dabei erlangen Sie ein tieferes Verständnis der zugrundliegenden Curricula.</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |

Stand: 29. September 2023

Seite 179
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Praktische Semantik von Programmiersprachen</th>
<th>7,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>599478</td>
<td>Practical semantics of programming languages</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>PD Dr.habil. Tadeusz Litak</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
<th>We study the foundations of the imperative and functional languages, including semantics and type systems. The special feature of this course is that theory is done in a very practical and hands-on way: we not just prove, but program all the results from first-principles. The basic tool used in the course is Coq proof assistant, which can be regarded as a functional programming language in its own right. It has been used, for example, to verify correctness of Java Card technology, C compilers or, more recently, fragments of x86 architecture.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
<th>Fachkompetenz Wissen The students explain the basics of both programming semantics and proof assistants, in particular Coq. Verstehen The students prove theorems using a proof assistant. Anwenden The students transfer proofs into programs and programs into proofs. Analysieren The students examine behaviour of simple programs using formal semantics Evaluieren (Beurteilen) The students evaluate the role played by logic and type theory in scientific approach to programming. Erschaffen The students provide formal semantics to a simple programming language.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
<th>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
<th>mündlich</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>mündlich (100%)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>nur im Sommersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitsstunden</th>
<th>Präsenzzzeit: 56 h Eigenstudium: 169 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| 15 | **Unterrichts- und Prüfungssprache** | Deutsch
Englisch |
| 16 | **Literaturhinweise** | Online book “Software Foundations” http://www.cis.upenn.edu/~bcpierce/sf/
Online books by Adam Chlipala: “Certified Programming with Dependent Types” http://adam.chlipala.net/cpdt/ and “Formal Reasoning About Programs” http://adam.chlipala.net/frap/
Supplementary reading on the theory of programming: Types and Programming Languages
Benjamin C. Pierce, The MIT Press
Supplementary reading on Coq: Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions
Series: Texts in Theoretical Computer Science. An EATCS Series
Bertot, Yves, Casteran, Pierre |
Inhalt

Die Vorlesung "Praktische Softwaretechnik" soll ...
- ein Bewusstsein für die typischen Problemstellungen schaffen, die bei der Durchführung umfangreicher Softwareentwicklungsprojekte auftreten,
- ein breites Basiswissen über die Konzepte, Methoden, Notationen und Werkzeuge der modernen Softwaretechnik vermitteln und
die Möglichkeiten und Grenzen ihres Einsatzes im Kontext realistischer Projektumgebungen anhand praktischer Beispiele demonstrieren und bewerten.

Die Vorlesung adressiert inhaltlich alle wesentlichen Bereiche der Softwaretechnik. Vorgestellt werden unter anderem
- traditionelle sowie agile Methoden der Softwareentwicklung,
- Methoden der Anforderungsanalyse und des Systementwurfs,
- Konzepte der Softwarearchitektur, -implementierung und Dokumentation und
testen und Qualitätssicherung sowie Prozessverbesserung.

Weitere Materialien und Informationen sind hier zu finden:
- Zeitplan: http://goo.gl/0fy1T
- Materialien: Auf StudOn über den Zeitplan

Die Teilnahme ist begrenzt. Bitte registrieren Sie sich zeitig für den Kurs auf StudOn, um sicherzustellen, dass Sie einen Platz erhalten.

Lernziele und Kompetenzen

Die Studierenden
- verstehen den Unterschied zwischen "Programmieren im Kleinen" und "Programmieren im Großen" (Softwaretechnik)
- wenden grundlegende Methoden der Softwaretechnik über den gesamten Projekt- und Produktlebenszyklus an
- kennen die Rolle und Zuständigkeiten der Berufsbilder "Projektleiter", "Anforderungsermittler", "Softwareentwickler" und "Qualitätssicherer"

Voraussetzungen für die Teilnahme

Keine

Einpassung in Studienverlaufsplan

Semester: 3
| | Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache | Deutsch
Englisch |
<p>| 16| Literaturhinweise | siehe http://goo.gl/JSoUbV |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Randomisierte Algorithmen</th>
<th>7,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>164985</td>
<td>Randomised algorithms</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Rolf Wanka</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Inhalt | Bei der Lösung kombinatorischer oder zahlentheoretischer Probleme ist es oft möglich, durch Würfeln schnell und einfach mit hoher Wahrscheinlichkeit oder im Durchschnitt zu hervorragenden Lösungen zu kommen. In diesem Modul lernen wir Konzepte wie die Probabilistische Methode, Irrläufe (Random Walks) und Varianzanalysen von Zufallsprozessen kennen und wenden sie auf graphentheoretische Probleme und effiziente Datenstrukturen an. Zu den vorgestellten Inhalten gehören u.a.:
 - Schnelle Wiederholung wahrscheinlichstheoretischer Begriffe und Resultate
 - Das Pólyasche Urnen-Modell und Chernoff-Schranken
 - Die Probabilistische Methode und ihre Anwendung auf die Berechnung maximaler Schnitte und unabhängiger Mengen und die Anwendung der Probabilistischen Methode zum Beweis der Lovász-Local-Lemma
 - Random Walks und ihre Anwendung auf das Erfüllbarkeitsproblem
 - Approximate Counting und die Markov-Chain-Monte-Carlo-Methode
 Neueste Ergebnisse dieses Forschungsgebietes werden inhaltlich in das Modul eingebunden. |
| 6 | Lernziele und Kompetenzen | Die Studierenden lernen moderne fortgeschrittene Konzepte für die schnelle Lösung kombinatorischer Optimierungsproblem mithilfe zufallsbasiertter Algorithmen kennen und wie sie sie einsetzen können, um konkrete Anwendungsprobleme zu bearbeiten. Sie kennen dazu konkrete fachspezifische Einzelheiten wie Begriffe, Definitionen, Fakten, Gesetzmäßigkeiten und Theorien und lernen und wie die berechneten Lösungen analysiert und qualitativ eingeordnet werden. |
| 7 | Voraussetzungen für die Teilnahme | Die Module "Einführung in die Algorithmik“ bzw. "Algorithmen und Datenstrukturen" und das Modul "Berechenbarkeit und Formale Sprachen". |
| 8 | Einpassung in Studienverlaufsplan | Semester: 3 |
| 9 | Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
| 10 | Studien- und Prüfungsleistungen | mündlich |

Stand: 29. September 2023 Seite 184
<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>mündlich (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 165 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch oder Englisch |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Security and Privacy in Pervasive Computing</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>327615</td>
<td>Security and privacy in pervasive computing (lecture with exercises)</td>
<td></td>
</tr>
</tbody>
</table>

| Lehrveranstaltungen | Vorlesung: SecPriPC (2 SWS) | Übung: Security and Privacy in Pervasive Computing - Übung (2 SWS) | |

| Lehrende | PD Dr.habil. Zinaida Benenson |

| Modulverantwortliche/r | PD Dr.habil. Zinaida Benenson |

| Inhalt | Pervasive Computing, also called Ubiquitous Computing, is a computing paradigm that comprises billions computing devices integrated into everyday objects and connected into a global communication network that is orders of magnitude larger than the Internet today. These devices measure environmental characteristics, exchange information about their surroundings and interact with people in many different ways, such that sometimes people may be even unaware that they are using computers. The era of pervasive computing has already started and moves on rapidly, integrating the Internet, smartphones, wearable computing devices (such as Google glass or Apple Watch), smart grid, home automation, intelligent cars and smart cities. |

| Inhalt | In this course we look at the visions and current scenarios of Pervasive Computing from the security and privacy point of view. We consider security mechanisms and privacy concerns of the present-day technologies, such as smartphone operating systems, GSM/UMTS, WLAN, Bluetooth, ZigBee, RFID, and also of present and envisioned systems and services such vehicular networks, sensor networks, location-based services and augmented reality. |

| Inhalt | The exercise comprises (1) practical tasks on specific attacks, such as eavesdropping on WiFi or ZigBee communication, and (2) guest talks on selected topics, for example, NFC security. For practical exercises, students will be divided into groups, and each group will have to execute the tasks in our lab and write a report about their work for each task. Further details will be communicated in the first exercise. |

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th>The students are able to:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th>- recognize existing and future computing systems as pervasive through analysis of their conceptual design and development, deployment and actual usage</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th>- critically appraise pervasive computing systems for typical security- and privacy-related concerns and weaknesses in design, deployment and usage</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th>- choose appropriate techniques and policies for securing pervasive computing systems</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th>- choose appropriate techniques and policies for addressing privacy issues in pervasive computing systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
</tbody>
</table>
| 13 | **Arbeitsaufwand in Zeitstunden** | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | **Dauer des Moduls** | 1 Semester |
| 15 | **Unterrichts- und Prüfungssprache** | Deutsch
Englisch |
| 16 | **Literaturhinweise** | Books and papers will be presented during the lecture. |
Einleitung und Motivation
- Was ist Security?
- Die Bedeutung von Security für zuverlässige Systeme
- Klassifikation von Angriffen
- Entwurf eingebetteter Systeme

Angriffsszenarien
- Beispiele von Angriffsszenarien
- Kryptographischer Algorithmen als Ziel von Angriffen

Angriffe durch Einschleusen von Code (Code Injection Attacks)
- Welche Arten von Code Injection-Angriffe gibt es?
- Gegenmaßnahmen

Invasive physikalische Angriffe (Invasive Physical Attacks)
- Microprobing
- Reverse Engineering
- Differential Fault Analysis
- Gegenmaßnahmen

Nichtinvasive softwarebasierte Angriffe (Non-Invasive Logical Attacks)
- Erlangen von nicht autorisiertem Zugriff
- Gegenmaßnahmen

Nichtinvasive physikalische Angriffe (Non-Invasive Physical Attacks)
- Abhören
- Seitenkanalangriffe
- Gegenmaßnahmen

Lernziele und Kompetenzen
- Fachkompetenz - Wissen
 - Die Studierenden legen die entsprechenden Gegenmaßnahmen dar
 - Die Studierenden nennen verschiedene Sicherheitseinrichtungen und -maßnahmen in eingebetteten Systemen
- Fachkompetenz - Verstehen

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

Empfohlene Bücher zur Begleitung und Vertiefung:

Weitere Informationen:
Modulbezeichnung: Sichere Systeme

Modul: Secure Systems

ECTS: 5

Lehrveranstaltungen:
- Übung: SecSysUE02 (2 SWS)
- Vorlesung: Sichere Systeme (2 SWS)

Lehrende:
- Dr. Ing. Ralph Palutke
- Prof. Dr.-Ing. Felix Freiling

Modulverantwortliche/r:
- Prof. Dr.-Ing. Felix Freiling

Inhalt:
Die Vorlesung gibt einen einführenden Überblick über Konzepte und Methoden der IT-Sicherheit. Themen (unter anderem):
- Angreifer und Schutzziele
- Cyberkriminalität und Strafbarkeit
- Ethik und Privatsphäre
- grundlegende Muster von Unsicherheit in technischen Systemen
- grundlegende Sicherheitsmechanismen
- Techniken der Sicherheitsanalyse
- ausgewählte Beispiele aus dem Bereich der Kryptographie und Internetsicherheit (Web-Security)

In der Übung werden die Themen der Veranstaltung beispielhaft eingeübt. Themen (unter anderem):
- Kryptanalyse und Angreifbarkeit kryptographischer Protokolle
- Schutzziele und Strafbarkeit
- Zertifikate und Public-Key-Infrastrukturen
- Web-Security
- anonyme Kommunikation
- formale Sicherheitsanalyse
- Sicherheitstesten

Lernziele und Kompetenzen:

Voraussetzungen für die Teilnahme:
Keine

Einplassung in Studienverlaufsplan:
Semester: 1

Verwendbarkeit des Moduls:
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232
<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
<th>Klausur (90 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
Weitere Literatur wird in der Vorlesung bekanntgegeben. |
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93146 Software-Anwendungen mit KI (VUE 5-ECTS)</td>
<td>Vorlesung mit Übung: Software-Anwendungen mit KI (SWS)</td>
<td>Prof. Dr. Dirk Riehle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Inhalt</th>
<th>Lernziele und Kompetenzen</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Einpassung in Studienverlaufplan</th>
<th>Verwendbarkeit des Moduls</th>
<th>Studien- und Prüfungsleistungen</th>
<th>Berechnung der Modulnote</th>
<th>Turnus des Angebots</th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Dauer des Moduls</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Informatik Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
<td>Variabel</td>
<td>Variabel (100%)</td>
<td>keine Angaben zum Turnus des Angebots hinterlegt!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Präsenzzeit: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)</td>
<td>?? Semester (keine Angaben zur Dauer des Moduls hinterlegt)</td>
<td>Deutsch</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
Modulverantwortliche/r
Prof. Dr.-Ing. Felix Freiling

Inhalt

Lernziele und Kompetenzen
- typische Schwachstellen in Quell- und Binärcode erkennen
- Exploits für konkrete Schwachstellen erstellen
- Eigenes Vorgehen rechtlich und ethisch bewerten

Voraussetzungen für die Teilnahme
Keine

Einpassung in Studienverlaufsplan
Semester: 1

Verwendbarkeit des Moduls
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232

Studien- und Prüfungsleistungen
Klausur (60 Minuten)

Berechnung der Modulnote
Klausur (100%)

Turnus des Angebots
nur im Sommersemester

Arbeitsaufwand in Zeitstunden
Präsenzzeit: 60 h
Eigenstudium: 90 h

Dauer des Moduls
1 Semester

Unterrichts- und Prüfungssprache
Deutsch

Literaturhinweise
Stand: 29. September 2023
Table:

<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Software Projektmanagement</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>312443</td>
<td>Software project management</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Software-Projektmanagement (4 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Bernd Hindel</td>
<td></td>
</tr>
</tbody>
</table>

4 Modulverantwortliche/r
Prof. Dr. Bernd Hindel

5 Inhalt

Gliederung:
1. Einführung Grundbegriffe des Projektmanagements, unterschiedliche Projektgrößen, unterschiedliche Projektarten, Erfolg und Misserfolg in Projekten
2. Projektstart und Planung, Kickoff-Meeting, Anforderungssammlung, Projektstrukturplan, Aufwandsschätzung, Aktivitäten-, Ressourcen- und Kostenplan
3. Projektkontrolle und Steuerung, Fortschrittsüberwachung, Besprechungen, Berichte, Änderungsmanagement
4. Personalmanagement, Der Faktor Mensch, Teamwork, Führungsgrundsätze, Gesprächenstrategien, Konflikte lösen
5. Änderungsmanagement Konfigurationen, Änderungswünsche, Change Control Board, Built- und Release-Mechanismen
6. Qualitäts- und Risikomanagement Qualitätsplan, Audits und Reviews, Risikoermittlung, Risikobewertung und Verfolgung, Gegenmaßnahmen

6 Lernziele und Kompetenzen

Die Studierenden
- kennen die Grundbegriffe des Projektmanagements
- unterscheiden unterschiedliche Projektgrößen, unterschiedliche Projektarten
- verstehen die Ursachen für Erfolg und Misserfolg in Projekten
- planen selbständig Projekte und organisieren das Kickoff-Meeting
- erstellen Anforderungen, Projektstrukturplan, Aufwandsschätzung, Aktivitäten-, Ressourcen- und Kostenplan
- verstehen Projektkontrolle und Steuerung, Fortschrittsüberwachung, Besprechungen, Berichte, Änderungsmanagement
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Studienverlaufsplan | Semester: 3 |
| 9 | Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
| 10 | Studien- und Prüfungsleistungen | Portfolio |
| 11 | Berechnung der Modulnote | Portfolio (100%) |
| 12 | Turnus des Angebots | nur im Wintersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | - Hindel, Bernd; Hörmann, Klaus; Müller, Markus; Schmied, Jürgen: "Basiswissen Software-Projektmanagement" (dpunkt-Verlag, 2. Auflage 2006)
- Hindel, Bernd; Hörmann, Klaus; Müller, Markus; Dittmann, Lars: "SPiCE in der Praxis" (dpunkt-Verlag, 2006)
- Hindel, Bernd; Versteegen, Gerhard; Meier, Erich; Vlasan, Adriana: "Prozessübergreifendes Projektmanagement" (Springer Verlag, 2005) |
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Softwarezuverlässigkeit</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>357823</td>
<td>Software reliability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten. |

| 3 | Lehrende | - |

| 4 | Modulverantwortliche/r | Prof. Dr. Francesca Saglietti |

| 5 | Inhalt | Das Modul befasst sich schwerpunktmäßig mit quantitativen Verfahren zur Bestimmung der erzielten Zuverlässigkeit eines Softwaresystems. Dies wird durch Berichte aktueller Erfahrungen aus der industriellen Entwicklungs- und Genehmigungspraxis abgerundet und ergänzt. |

| 6 | Lernziele und Kompetenzen | Die Studierenden:
 - wenden Konzepte der Zuverlässigkeitstheorie an
 - unterscheiden zwischen verschiedenen Teststrategien (wie z.B. Zufallstest, struktureller und funktionaler Test)
 - unterscheiden zwischen verschiedenen Zuverlässigkeitswachstumsmodellen und erläutern Möglichkeiten zur Verbesserung deren Vorhersagegenauigkeit
 - wenden Hypothesentests (statistische Stichprobentheorie und sequentieller Wahrscheinlichkeitsverhältnis-Test) zur Ableitung quantitativer Aussagen zur Softwarezuverlässigkeit an. |

| 7 | Voraussetzungen für die Teilnahme | Keine |

| 8 | Einpassung in Studienverlaufsplan | Semester: 3 |

| 9 | Verwendbarkeit des Moduls | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |

| 10 | Studien- und Prüfungsleistungen | mündlich |

| 11 | Berechnung der Modulnote | mündlich (100%) |

| 12 | Turnus des Angebots | nur im Sommersemester |

| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |

| 14 | Dauer des Moduls | 1 Semester |

| 15 | Unterrichts- und Prüfungssprache | Deutsch |

<p>| 16 | Literaturhinweise | Handbook of Software Reliability Engineering, Michael R. Lyu, 1995 |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Speech and Language Processing</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Andreas Maier
Prof. Seung Hee Yang |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Inhalt</td>
</tr>
</tbody>
</table>
| 6 | Lernziele und Kompetenzen | Die Studierenden
• verstehen die Grundlagen der menschlichen Sprachproduktion und die akustischen Eigenschaften unterschiedlicher Phonemklassen
• erklären den allgemeinen Aufbau eines Mustererkennungssystems
• verstehen Abtastung, das Abtasttheorem und Quantisierung in Bezug auf Sprachsignale
• verstehen die Fourier-Transformation und mathematische Modelle der Sprachproduktion
• verstehen harte und weiche Vektorquantisierungsmethoden
• verstehen unüberwachtes Lernen (EM-Algorithmus)
• verstehen Hidden Markov-Modelle (HMMs)
• erklären stochastische Sprachmodelle

The students
• understand the principles of human speech production and acoustic properties of the different phoneme classes
• explain the general pipeline of a pattern recognition system
• understand sampling, the sampling theorem, and quantization w.r.t. speech signals |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | • understand Fourier transformation and mathematical models of speech production
 | • understand hard and soft vector quantization methods
 | • understand unsupervised learning (EM-algorithm)
 | • understand Hidden Markov Models (HMMs)
 | • explain stochastic language models |
| 7 | Voraussetzungen für die Teilnahme |
| 8 | Keine |
| 9 | Einpassung in Studienverlaufsplan |
| 10 | Semester: 3 |
| 11 | Verwendbarkeit des Moduls |
| 12 | Informatik Bachelor of Science Wirtschaftsinformatik 20182
 | Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
| 13 | Studien- und Prüfungsleistungen |
| 14 | Variabel (90 Minuten) |
| 15 | Berechnung der Modulnote |
| 16 | Variabel (100%) |
| 17 | Turnus des Angebots |
| 18 | nur im Sommersemester |
| 19 | Arbeitsaufwand in Zeitstunden |
| 20 | Präsenzzeit: 60 h
 | Eigenstudium: 90 h |
| 21 | Dauer des Moduls |
| 22 | 1 Semester |
| 23 | Unterrichts- und Prüfungssprache |
| 24 | Englisch |
| 25 | Literaturhinweise |
| 26 | • Niemann H.: Klassifikation von Mustern; Springer, Berlin 1983
 | • Niemann H.: Pattern Analysis and Understanding; Springer, Berlin 1990
 | • Schukat-Talamazzini E.G.: Automatische Spracherkennung; Vieweg, Wiesbaden 1995
 | • Rabiner L.R., Juang B.H.: Fundamentals of Speech Recognition; Prentice Hall, New Jersey 1993 |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
<th>Inhalt</th>
<th>Lernziele und Kompetenzen</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Einpassung in Studienverlaufspl</th>
<th>Verwendbarkeit des Moduls</th>
<th>Studien- und Prüfungsleistungen</th>
<th>Berechnung der Modulnote</th>
<th>Turnus des Angebots</th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Dauer des Moduls</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Literaturhinweise</th>
</tr>
</thead>
</table>
1. **Modulbezeichnung**

 669768

 SWAT-Intensivübung

 SWAT intensive tutorial

 5 ECTS

2. **Lehrveranstaltungen**

 Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.

3. **Lehrende**

 -

4. **Modulverantwortliche/r**

 Prof. Dr.-Ing. Richard Lenz

5. **Inhalt**

 - Entwurf und Implementierung einer typischen Web-Applikation
 - Kreatives Arbeiten im Team
 - Agile Softwareentwicklung
 - Verwendung von aktuellen Technologien
 - Moderne Programmiertechniken

6. **Lernziele und Kompetenzen**

 Die Studierenden
 - konzipieren und implementieren eine mehrschichtige Web-Anwendung.
 - bewerten den Arbeitsaufwand von Aufgaben.
 - wenden agile Entwicklungsmethoden im Rahmen von Softwareentwicklung an.
 - arbeiten kooperativ und verantwortlich in Gruppen und können das eigene Kooperationsverhalten sowie die Zusammenarbeit in der Gruppe kritisch reflektieren und optimieren.
 - arbeiten sich eigenständig in Technologien ein, stellen diese Technologien in Präsentationen vor und wenden sie im Projekt an.

7. **Voraussetzungen für die Teilnahme**

 - Algorithmen und Datenstrukturen: Objektorientierung
 - Konzeptionelle Modellierung: Datenmodellierung und UML
 - Softwareentwicklung in Großprojekten: Entwurfsmustern und IT-Vorgehensmodellen
 - Systemprogrammierung: Betriebssystem-Architektur
 - Rechnerkommunikation: Transferprotokollen
 - Implementierung von Datenbanksystemen: Schichtenarchitektur, Transaktionen

8. **Einpassung in Studienverlaufsplan**

 Semester: 3

9. **Verwendbarkeit des Moduls**

 Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182

 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232

10. **Studien- und Prüfungsleistungen**

 Portfolio

11. **Berechnung der Modulnote**

 Portfolio (100%)

12. **Turnus des Angebots**

 nur im Sommersemester

Stand: 29. September 2023
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 115 h
Eigenstudium: 35 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | • Elemental Design Patterns, Smith, 2012
• Patterns of Enterprise Application Architecture, Fowler, 2003
• Scrum mit User Stories, Wirdemann, 2011
• Agile Testing, Crispin and Gregory, 2009
• More Agile Testing, Crispin and Gregory, 2015 |
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Testen von Softwaresystemen</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>189989</td>
<td>Testing software systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten. |

| 3 | Lehrende | - |

| 4 | Modulverantwortliche/r | Dr.-Ing. Norbert Oster |

| 5 | Inhalt | • Test-Terminologie und Software-Qualität nach ISO/IEC 9126
• Fundamentaler Testprozess
• Teststufen im Softwarelebenszyklus
• Statischer Test: Reviews
• Erfahrungsrelevantes Testen
• Black-Box-Testverfahren: Äquivalenzklassen-/Grenzwerttest, Zustandsbezogener Test, Entscheidungstabellentest
• Statische Analyse: Daten- und Kontrollflussanomalien
• White-Box-Testverfahren: Kontrollflussbasiert, Datenflussbasiert, Bedingungsüberdeckung
• Mutationstest
• Testmanagement: Planung, Kostenschätzung, Überwachung, Risikobewertung, Priorisierung, Fehlermanagement
• Formale Verifikation: Theorem Proving und Model Checking
• Quantitative Zuverlässigkeitsbewertung |

| 6 | Lernziele und Kompetenzen | Die Studierenden
• unterscheiden die verschiedenen Fachbegriffe aus der Test-Domäne
• erläutern die unterschiedlichen Aspekte der Software-Qualität
• beschreiben den fundamentalen Testprozess und seine einzelnen Teilaufgaben
• erläutern die wichtigsten Aspekte der Testpsychologie und entscheiden auf dieser Basis z.B. über das Testteam
• beschreiben die typischen Teststufen und ordnen diese den Phasen im Softwarelebenszyklus zu
• stellen die Unterschiede zwischen dynamischem Test, Review und statischer Analyse heraus
• unterscheiden verschiedene Review-Arten und veranschaulichen deren typische Arbeitsschritte und Rollen
• differenzieren verschiedene Formen erfahrungsrelevanten Testens
• wenden das Verfahren der Äquivalenzklassenbildung an und ermitteln entsprechende Testfälle für den Grenzwerttest
• entwickeln Entscheidungstabellen für beliebige Testaufgaben und bestimmen die entsprechenden Testfälle
• erläutern typische Daten-/Kontrollflussanomalien an selbstgewählten Beispielen
• unterscheiden verschiedene kontrollfluss-, datenfluss und bedingungsorientierte Testkriterien
• wenden die grundlegenden White-Box-Testkriterien an und leiten entsprechende Testfälle ab |

Stand: 29. September 2023 Seite 204
• begründen die Ordnung der White-Box-Überdeckungskriterien in ihrer Subsumptionshierarchie
• erläutern das Konzept des Mutationstests zur quantitativen Bewertung der Testgüte
• gestalten einen konkreten Testprozess aus der Sicht eines Testmanagers
• beschreiben die wichtigsten Facetten des Fehlermanagements
• erläutern den Unterschied zwischen Theorem Proving und Model Checking und skizzieren das jeweilige Vorgehen
• wenden Theorem Proving auf sequentiellen Code an und skizzieren den Beweis der Interferenzfreiheit bei Nebenläufigkeit
• beschreiben Voraussetzungen, Annahmen und Vorgehen bei verschiedenen Arten der quantitativen Zuverlässigkeitsbewertung
• entscheiden je nach Art des Softwareprodukts welche Art der quantitativen Zuverlässigkeitsbewertung zulässig ist
• nennen die wichtigsten Normen und Standards sowie deren typische Anforderungen
• bewerten und benutzen Werkzeuge für verschiedene Testaufgaben

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>mündlich</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>mündlich (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
| 16 | Literaturhinweise | Spillner, Andreas; Linz, Tilo: Basiswissen Softwaretest, dpunkt-Verlag
Liggesmeyer, Peter: Software-Qualität, Spektrum Verlag
Spillner, Andreas; Roßner, Thomas; Winter, Mario; Linz, Tilo: Praxiswissen Softwaretest - Testmanagement, dpunkt-Verlag
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Test- und Analyseverfahren zur Software-Verifikation und Validierung</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Francesca Saglietti</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Francesca Saglietti</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Das Modul befasst sich zunächst mit der Bewertung der Relevanz eingebetteter Software in komplexen Automatisierungssystemen. In Abhängigkeit vom Grad der zu übernehmenden Sicherheitsverantwortung werden anschließend zahlreiche Test- und Analyseverfahren unterschiedlicher Rigorosität behandelt, die sich jeweils zur Überprüfung der Entwicklungskorrektheit (Verifikation) bzw. der Aufgabenangemessenheit (Validierung) eignen.

Content:
The module starts with approaches aimed at evaluating the relevance of embedded software in complex control systems. Depending on the degree of the underlying safety relevance, several testing and analysis techniques at different levels of rigour are successively introduced; their application helps checking the correctness of the product developed (verification) resp. the appropriateness of the task specified (validation).

Lernziele und Kompetenzen

Die Studierenden
- analysieren die Relevanz eingebetteter Software in komplexen Automatisierungssystemen anhand von Fehlerbäumen und kausalen Relationen;
- unterscheiden verschiedene Testverfahren hinsichtlich ihrer Erfüllung struktureller, kontrolflussbasierter bzw. datenflussbasierter Codeüberdeckungskriterien sowie ihres Fehlererkennungspotenzials;
- bewerten die Angemessenheit von Testfallmengen mittels Mutationstesten;
- überprüfen die Korrektheit von Modellen und Programmen anhand axiomatischer Beweisverfahren und Model-Checking-Verfahren.

Learning objectives and competencies:
The students
- analyse the relevance of embedded software in complex control systems by means of fault trees and causal relations;
- distinguish between different testing techniques in terms of their achievement of structural, control flow based resp. data flow based code coverage criteria and their fault detection capabilities;
- evaluate the adequacy of test case sets by means of mutation testing;
- check the correctness of models and programs by means of axiomatic proofs and model checking.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufplan</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | Lehrbuch der Softwaretechnik (Band 1), Helmut Balzert, 2000 |

Ziel dieses Moduls ist es, die sich durch die speziellen Eigenschaften verteilter Systeme ergebenden Problemstellungen zu verdeutlichen und Ansätze zu vermitteln, mit deren Hilfe sie gelöst werden können; Beispiele hierfür sind etwa die Interaktion zwischen heterogenen Systemkomponenten, der Umgang mit erhöhten Netzwerklatenzen sowie die Wahrung konsistenter Zustände über Rechnergrenzen hinweg. Gleichzeitig zeigt das Modul auf, dass die Verteiltheit eines Systems nicht nur Herausforderungen mit sich bringt, sondern auf der anderen Seite auch Chancen eröffnet. Dies gilt insbesondere in Bezug auf die im Vergleich zu nicht verteilten Systemen erzielbare höhere Widerstandsfähigkeit eines Gesamtsystems gegenüber Fehlern wie den Ausfällen ganzer Rechner oder sogar kompletter Datenzentren.

Im Rahmen der Übungen wird zunächst ein plattformunabhängiges Fernaufrufsystem schrittweise entwickelt und parallel dazu getestet. Als Vorlage und Orientierungshilfe dient dabei das in der Praxis weit verbreitete Java RMI. In den weiteren Übungsaufgaben stehen anschließend klassische Problemstellungen von verteilten Systemen...
wie fehlertolerante Replikation und verteilte Synchronisation im Mittelpunkt.

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studierende, die das Modul erfolgreich abgeschlossen haben:</td>
</tr>
<tr>
<td>• beschreiben charakteristische Merkmale und Eigenschaften verteilter Systeme sowie grundlegende Probleme im Zusammenhang mit ihrer Realisierung.</td>
</tr>
<tr>
<td>• untersuchen die Unterschiede zwischen lokalen Methodenaufrufen und Fernmethodenaufrufen.</td>
</tr>
<tr>
<td>• vergleichen Ansätze zur Konvertierung von Nachrichten zwischen verschiedenen Datenrepräsentationen.</td>
</tr>
<tr>
<td>• konzipieren eine eigene auf Java RMI basierende Anwendung.</td>
</tr>
<tr>
<td>• entwickeln ein eigenes Fernaufrufsystem nach dem Vorbild von Java RMI.</td>
</tr>
<tr>
<td>• gestalten ein Modul zur Unterstützung verschiedener Fernaufrufsemantiken (Maybe, Last-of-Many) für das eigene Fernaufrufsystem.</td>
</tr>
<tr>
<td>• beurteilen auf Basis eigener Experimente mit Fehlerinjektionen die Auswirkungen von Störeinflüssen auf verschiedene Fernaufrufsemantiken.</td>
</tr>
<tr>
<td>• klasifizieren Mechanismen zur Bereitstellung von Fehlertoleranz, insbesondere verschiedene Arten der Replikation (aktiv vs. passiv).</td>
</tr>
<tr>
<td>• vergleichen verschiedene Konsistenzgarantien georeplizierter Systeme.</td>
</tr>
<tr>
<td>• illustrieren das Problem einer fehlenden gemeinsamen Zeitbasis in verteilten Systemen.</td>
</tr>
<tr>
<td>• erforschen logische Uhren als Mittel zur Reihenfolgebestimmung und Methoden zur Synchronisation physikalischer Uhren.</td>
</tr>
<tr>
<td>• unterscheiden grundlegende Zustellungs- und Ordnungsgarantien beim Multicast von Nachrichten.</td>
</tr>
<tr>
<td>• gestalten ein Protokoll für den zuverlässigen und totalgeordneten Versand von Nachrichten in einer Gruppe von Knoten.</td>
</tr>
<tr>
<td>• entwickeln einen Dienst zur Verwaltung verteilter Sperrobjekte auf Basis von Lamport-Locks.</td>
</tr>
<tr>
<td>• bewerten die Qualität einer Publikation aus der Fachliteratur.</td>
</tr>
<tr>
<td>• erschließen sich typische Probleme (Nebenläufigkeit, Konsistenz) und Fehlerquellen bei der Programmierung verteilter Anwendungen.</td>
</tr>
<tr>
<td>• können in Kleingruppen kooperativ arbeiten.</td>
</tr>
<tr>
<td>• können ihre Entwurfs- und Implementierungsentcheidungen kompakt präsentieren und argumentativ vertreten.</td>
</tr>
<tr>
<td>• können offen und konstruktiv mit Schwachpunkten und Irrwegen umgehen.</td>
</tr>
<tr>
<td>• reflektieren ihre Entscheidungen kritisch und leiten Alternativen ab.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>
| 9 | Verwendbarkeit des Moduls | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
| | | Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
| | | Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232 |
| 10| Studien- und Prüfungsleistungen | Klausur |
| 11| Berechnung der Modulnote | Klausur (100%) |
| 12| Turnus des Angebots | nur im Sommersemester |
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
| | | Eigenstudium: 90 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache | Deutsch |

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Wissensrepräsentation und -verarbeitung</th>
<th>Knowledge representation and processing</th>
<th>7,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Wissensrepräsentation und -verarbeitung (4 SWS)</td>
<td>7,5 ECTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: ÜWuV (2 SWS)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Michael Kohlhase</td>
<td>PD Dr. Florian Rabe</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Michael Kohlhase</td>
<td>PD Dr. Florian Rabe</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182 Wahlpflichtbereich Informatik Bachelor of Science Wirtschaftsinformatik 20232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Präsenzzeit: 90 h</td>
<td>Eigenstudium: 135 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch Englisch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
Wahlpflichtbereich
Methodische Grundlagen
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Business English Advanced for Information Systems Advanced Business English for Information Systems</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Übung: Englisch: Practical Business English NM (4 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Nicolas Monte Rachel Gracey Julie Porlein Balbiro Dhuga Michael Francis Gainey</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Dr. Mario Oesterreicher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voraussetzungen für die Teilnahme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abschluss der dem Sprachkurs jeweils vorangehende Niveaustufe des GER – nachweisbar über einen Einstufungstest, entsprechende Zertifikate oder erfolgreich abgeschlossene Kurse.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester: 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152</td>
</tr>
<tr>
<td></td>
<td>Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtbereich Methodische Grundlagen Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nachfolgende Prüfungsleistungen werden je nach Bekanntgabe an geeigneter Stelle gefordert:</td>
</tr>
<tr>
<td></td>
<td>- Präsentation (20 Minuten)</td>
</tr>
<tr>
<td></td>
<td>- Diskussionsbeitrag (10 Minuten)</td>
</tr>
<tr>
<td></td>
<td>- Lehrprobe (45 Minuten)</td>
</tr>
<tr>
<td></td>
<td>- Projektarbeit (bis zu 20 Seiten)</td>
</tr>
<tr>
<td></td>
<td>- mehrteilige Prüfungen:</td>
</tr>
<tr>
<td></td>
<td>- Präsentation + schriftliche Klausur</td>
</tr>
<tr>
<td></td>
<td>- Projektarbeit + Kurzmoderation + Kurztest</td>
</tr>
<tr>
<td></td>
<td>- Moderation + schriftliche Klausur</td>
</tr>
<tr>
<td></td>
<td>- Präsentation + Projektarbeit</td>
</tr>
<tr>
<td></td>
<td>- mündlicher Kurztest + schriftliche Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ü = 100 % bei nicht mehrteiligen Prüfungen. Bei mehrteiligen Prüfungen:</td>
</tr>
<tr>
<td></td>
<td>- Präsentation (30 %) + schriftliche Klausur (70 %)</td>
</tr>
<tr>
<td></td>
<td>- Projektarbeit (70 %) + Kurzmoderation (10 %) + Kurztest (20 %)</td>
</tr>
<tr>
<td></td>
<td>- Moderation (50 %) + schriftliche Klausur (50 %)</td>
</tr>
<tr>
<td></td>
<td>- Präsentation (50 %) + Projektarbeit (50 %)</td>
</tr>
<tr>
<td></td>
<td>- mündlicher Kurztest (50 %) + schriftliche Klausur (50 %)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wird im Kurs bekannt gegeben</td>
</tr>
</tbody>
</table>

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Business English for information systems</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>86840</td>
<td>Business English for Information Systems</td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Übung: Englisch: Writing lab1 (English for special purposes 1) (2 SWS) | 2,5 ECTS |
| | | Übung: Englisch: Writing lab2 (English for special purposes 2) (2 SWS) | 2,5 ECTS |

| 3 | Lehrende | Rachel Gracey |

| 4 | Modulverantwortliche/r | Dr. Mario Oesterreicher |

| 7 | Voraussetzungen für die Teilnahme | C1 Sprachkompetenz /Englisch |

| 8 | Einpassung in Studienverlaufsplan | Semester: 3 |
| | Verwendbarkeit des Moduls | Wahlbereich Bachelor of Science Wirtschaftsinformatik 20152
Vertiefungsbereich Bachelor of Science Wirtschaftsinformatik 20182
Wahlpflichtbereich Methodische Grundlagen Bachelor of Science Wirtschaftsinformatik 20232 |
|---|---------------------------|---|
| 10 | Studien- und Prüfungsleistungen | Klausur
Klausur |
| 11 | Berechnung der Modulnote | Klausur (50%)
Klausur (50%) |
| 12 | Turnus des Angebots | in jedem Semester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | Wird im Kurs bekannt gegeben |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
<th>Inhalt</th>
<th>Lernziele und Kompetenzen</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Verwendbarkeit des Moduls</th>
<th>Studien- und Prüfungsleistungen</th>
<th>Berechnung der Modulnote</th>
<th>Turnus des Angebots</th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Dauer des Moduls</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5 ECTS</td>
<td>Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung 82162</td>
<td>Mathematik Mathematics</td>
<td>5 ECTS</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Tutorium: Maths Tutorial (0 SWS)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Auftaktveranstaltung zur Mathematik (0 SWS)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Mathematik (Flipped Classroom) (4 SWS)</td>
<td>5 ECTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Brückenkurs zur Mathematik (Flipped Classroom) (4 SWS)</td>
<td>0 ECTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorium: Brückenkursstutorium zur Mathematik (SWS)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Norman Fickel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Norman Fickel</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>• Analysis: Funktionen, Differenziation, Extremwerte unter Nebenbedingungen, Integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lineare Algebra: Vektor-, Matrizen- und Determinantenrechnung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finanzmathematik: äquivalente Werte und Investitionsrechnung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Optional wird als Übung (2 SWS) ein Brückenkurs (Differenzialkalkül, Gaßverfahren und Zinsrechnung) angeboten.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden verstehen zentrale mathematische Methoden und wenden sie an.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlpflichtbereich Methodische Grundlagen Bachelor of Science Wirtschaftsinformatik 20232</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch oder Englisch</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Mathematik für Wirtschaftswissenschaftler; Sydsaeter, Hammond, Strom; 2023</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Mathematik C 1 für Wirtschaftsinformatik</td>
<td>Mathematics C1 for information systems</td>
<td>5 ECTS</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---</td>
<td>---------------------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Übung: IngMathC1U (2 SWS)</td>
<td>Vorlesung: Mathematik für Ingenieure C1: INF, IP, ILS (4 SWS)</td>
<td>-</td>
<td>7,5 ECTS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>PD Dr. Serge Kräutle</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>apl.Prof.Dr. Martin Gugat</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden • erklären grundlegende Begriffe und Strukturen der Mathematik • erklären den Aufbau von Zahlensystemen im Allgemeinen und der Obengenannten im Speziellen • rechnen mit komplexen Zahlen in Normal- und Polardarstellung und Wechseln zwischen diesen Darstellungen • berechnen lineare Abhängigkeiten, Unterräume, Basen, Skalarprodukte, Determinanten • vergleichen Lösungsmethoden zu linearen Gleichungssystemen • bestimmen Lösungen zu Eigenwertproblemen • überprüfen Eigenschaften linearer Abbildungen und Matrizen • überprüfen die Konvergenz von Zahlenfolgen • ermitteln Grenzwerte und überprüfen Stetigkeit • entwickeln Beweise anhand grundlegender Beweismethoden aus den genannten Themenbereichen • kennen eine regelmäßige selbstständige Nachbereitung und Anwendung des Vorlesungsstoffes</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlpflichtbereich Methodische Grundlagen Bachelor of Science Wirtschaftsinformatik 20232</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>schriftlich (90 Minuten)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>schriftlich (100%)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 90 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 60 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Skripte des Dozenten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W. Merz, P. Knabner, Mathematik für Ingenieure und Naturwissenschaftler, Springer, 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fried, Mathematik für Ingenieure I für Dummies I, Wiley</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Hoffmann, B. Marx, W. Vogt, Mathematik für Ingenieure 1, Pearson</td>
<td></td>
</tr>
</tbody>
</table>
Integriertes Management
| 1 | Modulbezeichnung | Business Plan Seminar
82387
Business plan seminar | 5 ECTS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Kai-Ingo Voigt</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Im Rahmen des Businessplanseminars werden Verbesserungsideen für das Geschäftsmodell von realen Praxispartnern gesammelt, ausgearbeitet, präsentiert und in Form eines detaillierten Businessplans beschrieben. Dazu erhalten die Studierenden kurze inhaltliche Erläuterungen zu den Zielsetzungen und Bestandteilen eines Businessplans.</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Integriertes Management Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
</tbody>
</table>
| 10 | Studien- und Prüfungsleistungen | Hausarbeit
Präsentation |
| 11 | Berechnung der Modulnote | Hausarbeit (50%)
Präsentation (50%) |
<p>| 12 | Turnus des Angebots | nur im Wintersemester |</p>
<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Präsenzzeit: 30 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 120 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturehinweise</td>
<td></td>
</tr>
</tbody>
</table>
| | Modulbezeichnung | Case Study Training im strategischen Management
Case study training in strategic management | 5 ECTS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Seminar: Case Study Training im strategischen Management (Fallstudienseminar Strategisches Management) (4 SWS)</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>
| 3 | Lehrende | Tobias Reif
Jule Holmer | |
| 4 | Modulverantwortliche/r | Prof. Dr. Sebastian Junge | |
| 5 | Inhalt | Im Rahmen des Fallstudienseminars lernen die Teilnehmenden mit Hilfe (englischer) Fallstudien, konkrete strategische Entscheidungsprobleme in Unternehmen zu analysieren, selbst erarbeitete Lösungen zu präsentieren und diese zu diskutieren. In den einzelnen Veranstaltungen werden die Methoden und Instrumente zur Lösung der Fallstudien vermittelt. Der Schwerpunkt liegt auf der Präsentation und Diskussion der Ergebnisse durch die Teilnehmenden. Die Teilnehmenden werden dabei in Teams eingeteilt, die in jeder Veranstaltung unterschiedliche Rollen einnehmen. | |
| 6 | Lernziele und Kompetenzen | Die Studierenden lernen theoretische Grundlagen des strategischen Managements kennen und können diese auf konkrete Fallsituationen anwenden. Dabei analysieren die Studierenden konkrete Entscheidungsprobleme in Unternehmen (beispielsweise hinsichtlich Herausforderungen der digitalen Transformation) und entwickeln dabei die Fähigkeit, selbständig unternehmerische Entscheidungen zu treffen. Auf Basis ihrer Entscheidung entwickeln die Teilnehmenden eine Präsentation, die sie im Plenum vorstellen. Im Rahmen einer anschließenden wissenschaftlichen Diskussionsrunde geben sich die Studierenden einerseits wertschätzendes Feedback und analysieren und bewerten andererseits die vorgestellte Problemlösung. | |
| 7 | Voraussetzungen für die Teilnahme | Keine | |
| 8 | Einpassung in Studienverlaufsplan | Semester: 5 | |
| 9 | Verwendbarkeit des Moduls | Integriertes Management Bachelor of Science Wirtschaftsinformatik 20232 | |
| 10 | Studien- und Prüfungsleistungen | schriftlich/mündlich
Es handelt sich um eine einheitliche Prüfung, bei der die einzelnen Teilleistungen untrennbar miteinander verbunden sind. Für das Bestehen des Moduls müssen nach § 21 Abs. 1 Sätze 2 und 4 der BPOWiWi in der jeweils geltenden Fassung alle Teilleistungen in demselben Semester bestanden werden. Wegen des untrennbaren Bezugs der Teilleistungen aufeinander ist abweichend von § 31 Abs. 1 Satz 2 BPOWiWi eine Wiederholung nur einer der nicht bestandenen Teilleistungen nicht möglich. Das Nichtbestehen einer der Teilleistungen erfordert die Wiederholung der gesamten Prüfung. | |
<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>schriftlich/mündlich (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 30 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 120 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>DATEV-Führerschein</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>82393</td>
<td>DATEV Student Certificate</td>
<td></td>
</tr>
</tbody>
</table>

| Modulverantwortliche/r | Prof. Dr. Frank Hechtner |

| Voraussetzungen für die Teilnahme | Die Module Buchführung, Jahresabschluss, Grundlagen des Steuerrechts und Unternehmensbesteuerung sind Voraussetzung für die Veranstaltung. Die Teilnehmerplätze sind begrenzt, da die Veranstaltung im PC-Pool stattfindet. Übersteigt die Nachfrage das Angebot der verfügbaren Plätze, so erfolgt eine Auswahl anhand der Noten aus den genannten Modulen. |

| Einpassung in Studienverlauf | Semester: 6 |

| Verwendbarkeit des Moduls | Integriertes Management Bachelor of Science Wirtschaftsinformatik 20232 |

| Studien- und Prüfungsleistungen | elektronische Prüfung (60 Minuten) |

| Berechnung der Modulnote | elektronische Prüfung (100%) |

| Turnus des Angebots | in jedem Semester |

| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigendauer: 90 h |

| Dauer des Moduls | 1 Semester |

| Unterrichts- und Prüfungssprache | Deutsch |

| Literaturhinweise | Weitergehende Literatur wird im Rahmen der Veranstaltung bekannt gegeben |
Modulbezeichnung: 86920 - Einführung in das Nachhaltigkeitsmanagement

Introduction to corporate sustainability management - 5 ECTS

Lehrveranstaltungen: Die Lehrveranstaltungen des Moduls werden nur im Sommersemester angeboten.

Lehrende - Prof. Dr. Markus Beckmann

Lernziele und Kompetenzen: Die Studierenden erlernen
• Fachwissen im Bereich Nachhaltigkeitsmanagement
• ein Verständnis für die Interdependenzen einzelner Unternehmensfunktionen insbesondere im Kontext von Nachhaltigkeit
• Argumentationskompetenz und kritische Reflexion gesellschaftlich relevanter Fragen
• Umsetzungskompetenz durch Praxisbeispiele für Nachhaltigkeitsmanagement
• Kenntnisse über Herausforderungen bei der Umsetzung von Nachhaltigkeitsmanagement in der Praxis

Voraussetzungen für die Teilnahme: Keine

Einpassung in den Studienverlaufsplan: Semester: 4;2;6

Verwendbarkeit des Moduls: Integriertes Management Bachelor of Science Wirtschaftsinformatik 20232

Studien- und Prüfungsleistungen: elektronische Prüfung (60 Minuten)

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>11</th>
<th>Berechnung der Modulnote</th>
<th>elektronische Prüfung (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
| | | Eigenstudium: 120 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch
<p>| | | Englisch |
| | | Weiterführende Materialien werden via StudOn bereitgestellt. |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Fallstudienseminar Supply Chain Strategie (Case studies on supply chain strategy)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Seminar: Fallstudienseminar Supply Chain Strategie (2 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Christoph Küffner, Prof. Dr.-Ing. Eva Maria Hartmann</td>
<td></td>
</tr>
</tbody>
</table>

4 | Modulverantwortliche/r | |

5 | Inhalt | Es werden anhand von Fallstudien Rahmenbedingungen und unternehmensinterne Faktoren in Organisationen ermittelt, die unternehmerische Entscheidungen beeinflussen. Für konkrete Fragestellungen werden Lösungsvorschläge erarbeitet und konzeptualisiert. |

6 | Lernziele und Kompetenzen | Die Studierenden erlernen das Anwenden von theoretischen Grundlagen in der Fallsituation. Sie können aus einer Vielzahl an Informationen die wichtigsten herausarbeiten und als Entscheidungsgrundlage nutzen. Sie üben das selbständige Treffen von unternehmerischen Entscheidungen und das Präsentieren der erarbeiteten Lösungswege im Plenum. |

7 | Voraussetzungen für die Teilnahme | Keine |

8 | Einpassung in Studienverlaufsplan | Semester: 5 |

9 | Verwendbarkeit des Moduls | Integriertes Management Bachelor of Science Wirtschaftsinformatik 20232 |

10 | Studien- und Prüfungsleistungen | Präsentation, Seminararbeit |

11 | Berechnung der Modulnote | Präsentation (50%), Seminararbeit (50%) |

12 | Turnus des Angebots | in jedem Semester |

13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h, Eigenstudium: 120 h |

14 | Dauer des Moduls | 1 Semester |

15 | Unterrichts- und Prüfungssprache | Deutsch |

16 | Literaturhinweise | Wird im Kurs bekannt gegeben |
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung 87002</th>
<th>Introduction to Sustainability Management</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Introduction to Sustainability Management (2 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Markus Beckmann</td>
<td></td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr. Markus Beckmann | |

| 5 | Inhalt | This lecture provides an introduction to Corporate Sustainability Management. The course starts by clarifying essential foundations: What is sustainability, and why is it an increasingly relevant concept today? How do companies contribute to sustainable development, and what are the implications for the job of sustainability management? What is the business case for sustainability, that is, what are the drivers for and benefits of taking a proactive approach to sustainability management? After this general introduction, we will briefly look at widely established standards and norms that provide specific instruments for managing sustainability across firms and corporate functions. Building upon these foundations, the central part of the course serves to zoom into the business firm and refine our analysis concerning various corporate functions. How do sustainability issues influence and interact with specific business functions such as marketing, production, accounting, supply chain management, human resources, finance, reporting, or strategy? How can these functions and their key instruments help to understand sustainability challenges better and realize sustainability goals? At the same time, we discuss how the specific perspective of sustainability can help to better adjust conventional corporate functions to the complexity of the current market and stakeholder demands. Throughout the lecture and exercise, we will follow the concept of integrated sustainability management, thus integrating the three pillars of sustainability: economy, natural environment, and society, into the core activities of business value creation. |

| 6 | Lernziele und Kompetenzen | Students will acquire:
- knowledge in sustainability management
- an understanding into the interdependencies of various corporate functions, particularly in the context of sustainability
- discursive and reflective competencies in regards to societally relevant questions
- practical insights for implementing sustainability in real-life applications
- insights on potential challenges during the implementation of sustainability management |

| 7 | Voraussetzungen für die Teilnahme | None |

<p>| 8 | Einpassung in Studienverlaufsplan | Semester: 3;5;7 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
<th>Integriertes Management Bachelor of Science Wirtschaftsinformatik 20232</th>
</tr>
</thead>
</table>
| 10| Studien- und Prüfungsleistungen | Klausur
Written examination (e-exam) |
| 11| Berechnung der Modulnote | Klausur (100%) |
| 12| Turnus des Angebots | nur im Wintersemester |
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 120 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache | Englisch |
| 16| Literaturhinweise | Provided via StudOn |

Stand: 29. September 2023
1 Modulbezeichnung 85614 Unternehmenssimulation zur wert- und risikoorientierten Steuerung in Versicherungen

Business simulation on risk- and value-oriented management in insurance 5 ECTS

2 Lehrveranstaltungen Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!

Es besteht Anwesenheitspflicht!

3 Lehrende Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!

4 Modulverantwortliche/r Prof. Dr. Nadine Gatzert

6 Lernziele und Kompetenzen Die Studierenden

• können die theoretischen Grundlagen anwenden sowie finanzielle wert- und risikoorientierte Steuerungskennzahlen berechnen und interpretieren;
• berichten im Rahmen einer Präsentation über die in der Unternehmenssimulation als Vorstandsteam getroffenen strategischen und operativen Entscheidungen und bewerten und reflektieren diese kritisch;
• entwickeln ihre Kompetenzen bei der Zusammenarbeit in Teams;
• entwickeln ihre Kompetenzen im Umgang mit Komplexität bei unternehmerischen Entscheidungen.

7 Voraussetzungen für die Teilnahme Keine.

Stand: 29. September 2023
<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 4;3;5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Integriertes Management Bachelor of Science Wirtschaftsinformatik 20232</td>
</tr>
</tbody>
</table>
| 10 | Studien- und Prüfungsleistungen | Portfolio
Seminararbeit (seminar paper): ca. 15 Seiten, inklusive Protokoll (ca. 1 Seite), in Gruppenarbeit und Präsentation/Präsentationspapier (presentation/presentation paper): ca. 15-25 Min., inklusive Präsentationspapier und Protokoll (ca. 1 Seite), in Gruppenarbeit
Es handelt sich um eine einheitliche Prüfung, bei der die einzelnen Teilleistungen untrennbar miteinander verbunden sind. Für das Bestehen des Moduls müssen nach § 19 Abs. 1 Satz 4 MPOWIWI (in der jeweils geltenden Fassung) alle Teilleistungen in demselben Semester bestanden werden. Wegen des untrennbaren Bezugs der Teilleistungen aufeinander ist abweichend von §§ 25 Abs. 1 Satz 2 MPOWIWI eine Wiederholung nur einer der nicht bestandenen Teilleistungen nicht möglich. Das Nichtbestehen einer der Teilleistungen erfordert die Wiederholung der gesamten Prüfung. |
| 11 | Berechnung der Modulnote | Portfolio (100%) |
| 12 | Turnus des Angebots | in jedem Semester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 120 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache| |
| 16 | Literaturhinweise | Werden in der Veranstaltung bekannt gegeben. |